Arithmetic and Reduced Powers

Juliette Kennedy

January 16, 2008

The failure of categoricity for models of arithmetic, in that this stands to refute the idea that we can make our intuitions about arithmetic precise, is a fact of fundamental philosophical importance. One can still try to classify and/or describe these models, but non-standard models of arithmetic are not recursive, meaning that the set of triples belonging to the addition relation (or respectively the multiplication relation) of a (countable) non-standard model is not a recursive set.

Stanley Tennenbaum, who proved their non-recursiveness, also showed that any countable model of arithmetic is embeddable into the reduced power \mathbb{N}^{ω}/F . The classification project then reduces to that of describing the behavior of (equivalence classes of) functions from \mathbb{N} to \mathbb{N} which happen to belong to models of arithmetic inside that structure. I obtained some results along these lines.

Subsequent research in collaboration with Jouko Väänänen and Saharon Shelah devolved on the question of whether uncountable models of arithmetic were embeddable into \mathbb{N}^{ω}/F , also the same substituting any regular filter in place of the Frechet filter F, and more generally still the question whether for any first order structure M of any cardinality, every model elementarily equivalent to the reduced power M^{λ}/D and of cardinality $\leq \lambda^{+}$ is embeddable into M^{λ}/D , for D a regular filter.

Over a series of papers, the authors showed that the question as conjectured by Chang and Keisler is independent of ZFC, as is the related question whether $A^{\lambda}/D \cong B^{\lambda}/D$ whenever A and B are elementarily equivalent models of size $\leq \lambda^+$ in a language $\leq \lambda$ and D is a regular filter. This was done by isolating a principle equivalent to the original conjectures, namely a finitary square principle $\Box_{\lambda,D}^{fin}$, a variant of \Box_{λ} . Questions to be taken up in subsequent research are whether proving estimates for the consistency strength of $\neg \Box_{\lambda,D}^{fin}$ can be obtained, and whether $\Box_{\lambda,D}^{fin}$ has a similar relation as other square principles to axioms like PFA.