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The failure of categoricity for models of arithmetic, in that this stands to
refute the idea that we can make our intuitions about arithmetic precise, is
a fact of fundamental philosophical importance. One can still try to classify
and/or describe these models, but non-standard models of arithmetic are not
recursive, meaning that the set of triples belonging to the addition relation (or
respectively the multiplication relation) of a (countable) non-standard model is
not a recursive set.

Stanley Tennenbaum, who proved their non-recursiveness, also showed that
any countable model of arithmetic is embeddable into the reduced power Nω/F .
The classification project then reduces to that of describing the behavior of
(equivalence classes of) functions from N to N which happen to belong to models
of arithmetic inside that structure. I obtained some results along these lines.

Subsequent research in collaboration with Jouko Väänänen and Saharon
Shelah devolved on the question of whether uncountable models of arithmetic
were embeddable into Nω/F , also the same substituting any regular filter in
place of the Frechet filter F , and more generally still the question whether
for any first order structure M of any cardinality, every model elementarily
equivalent to the reduced power Mλ/D and of cardinality ≤ λ+ is embeddable
into Mλ/D, for D a regular filter.

Over a series of papers, the authors showed that the question as conjectured
by Chang and Keisler is independent of ZFC, as is the related question whether
Aλ/D ∼= Bλ/D whenever A and B are elementarily equivalent models of size
≤ λ+ in a language ≤ λ and D is a regular filter. This was done by isolating a
principle equivalent to the original conjectures, namely a finitary square prin-
ciple ¤fin

λ,D, a variant of ¤λ. Questions to be taken up in subsequent research
are whether proving estimates for the consistency strength of ¬¤fin

λ,D can be
obtained, and whether ¤fin

λ,D has a similar relation as other square principles to
axioms like PFA.
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