Large cardinals and locally defined well–orders of the universe (with Sy Friedman)

David Asperó*

I am going to present a proof of the following theorem.

Theorem 0.1 (GCH) There is a formula $\Phi(x, y)$ without parameters and there is a definable class-sized partial order \mathcal{P} preserving ZFC, GCH and cofinalities, and such that

(1) \mathcal{P} forces that there is a well-order \leq of the universe such that

$$\{(a,b) \in H(\kappa^+)^2 : \langle H(\kappa^+), \in \rangle \models \Phi(a,b)\}$$

is the restriction $\leq | H(\kappa^+)^2$ and is a well-order of $H(\kappa^+)$ whenever $\kappa \geq \omega_2$ is a regular cardinal, and

(2) for all regular cardinals $\kappa \leq \lambda$, if κ is a λ -supercompact cardinal in V, then κ remains λ -supercompact after forcing with \mathcal{P} .

One key task (Task 1) in the proof of Theorem 0.1 is this: For a fixed regular cardinal $\kappa \geq \omega_2$, we build a forcing iteration for manipulating certain weak guessing properties for club-sequences defined on stationary subsets of κ , in such a way that (a certain definable subset of) the set of ordinals τ for which there is some club-sequence on κ of height τ and satisfying the property codes any prescribed subset A of κ .¹

Another task (Task 2) is the following: For the same fixed κ , given a function $F : \kappa \longrightarrow \mathcal{P}(\kappa)$ and a sequence $\mathcal{S} = \langle S_i : i < \kappa \rangle$ of pairwise disjoint stationary subsets of κ , we force in such a way that every $B \subseteq \kappa$ gets coded by some ordinal in δ^+ with respect to F and \mathcal{S} . This means that there is a

^{*}ICREA and U. Barcelona

¹A club-sequence $\langle C_{\alpha} : \alpha \in dom(\vec{C}) \rangle$ has height τ iff $ot(C_{\alpha}) = \tau$ for all $\alpha \in dom(\vec{C})$.

club $E \subseteq \mathcal{P}_{\kappa}(\delta)$ such that for every $X \in E$ and every $i < \kappa$, if $X \cap \kappa \in S_i$, then $ot(X) \in F(X \cap \kappa)$ if and only if $i \in B$.

It is possible to add F and S as above, then to pick a subset A of κ coding F and S, and then to perform Tasks 1 and 2 simultaneously, for A and for F and S, by a nicely behaved² forcing. This is the *one-step construction at* κ .

The forcing \mathcal{P} can be roughly described as a two-step iteration $\mathcal{B} * \dot{\mathcal{C}}$ in which \mathcal{B} is a forcing iteration of length Ord adding a system of bookkeeping functions and $\dot{\mathcal{C}}$ is another iteration on which we force with the one-step forcing at κ for all the relevant κ (using the bookkeeping functions added by \mathcal{B}).

I intend to present the above one-step construction with some detail and to outline the general lifting lemma that we use in the large cardinal preservation part of the proof.

 $^{^{2}\}kappa$ -strategically closed and κ -c.c.