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Wann sollte die Mathematik je zu einem Anfang gelangen, wenn sie warten wollte, bis
die Philosophie über unsere Grundbegri�e zur Klarheit und Einmüthigkeit gekommen ist?
Unsere einzige Rettung ist der formalistische Standpunkt, unde�nirte Begri�e (wie Zahl,
Punkt, Ding, Menge) an die Spitze zu stellen, um deren actuelle oder psychologische oder
anschauliche Bedeutung wir uns nicht kümmern, und ebenso unbewiesene Sätze (Axiome),
deren actuelle Richtigkeit uns nichts angeht. Aus diesen primitiven Begri�en und Urtheilen
gewinnen wir durch De�nition und Deduction andere, und nur diese Ableitung ist unser
Werk und Ziel. (Felix Hausdor�, 12. Januar 1918)
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1 Introduction
Mathematical logic studies the general methods of mathematics:

¡ the mathematical language of sentences and texts

¡ mathematical structures

¡ truth of mathematical statements in structures

¡ proofs

Tne central theorem in general logic will be

¡ Gödel's completeness theorem

We shall also consider

¡ set theory as a foundation of mathematics

¡ automatic theorem proving

Formalizing set theory in logic and logic in set theory leads to the

¡ Gödel incompleteness theorems

Mathematical logic is a meta-mathematics. It is, amazingly, also part of mathematics itself,
since mathematical language, structures and proofs satisfy mathematical laws themselves.
This is another evidence for the remarkable power of mathematics to model variious �elds:
mathematics is able to model itself .

At the center of attention is the relation

M� ';
which expresses that the formula ' is true in the mathematical structure M . M could, e.g.,
be a group (G;�) and ' could be the associative law �for all x; y;z: x+(y+z)=(x+ y)+z �.

The mathematical enquiry into the mathematical method leads to deep insights into
mathematics, applications to classical �elds of mathematics, and to new mathematical
theories. The study of mathematical language has also in�uenced the theory of formal and
natural languages in computer science, linguistics and philosophy.

I First-order Logic and the Gödel Com-
pleteness Theorem

2 The Syntax of �rst-order logic: Symbols, words, and
formulas

The art of free society consists �rst
in the maintenance of the symbolic
code.
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A. N. Whitehead

2.1 Motivation: a mathematical statement
We quote a theorem by Tom Hales:

Theorem 1. (The Kepler Conjecture) No packing of congruent balls in Euclidean three
space has density greater than that of the face-centered cubic packing.

Although we are not concerned with discrete geometry in this lecture, proof methods
by Hales (and others) will be of relevance to this course.

This is a natural language statement. Mathematicians know how to interpret it in
clearly determined, �formal� ways. Let us transform the statement in more formal form:

¡ Not exists a packing of congruent balls in Euclidean three space that has density
greater than the density of the face-centered cubic packing.

¡ Not exists P such that (P is a packing of congruent balls in Euclidean three space
and the density of P is greater than the density of the face-centered cubic packing).

¡ Not exists P (isAPackingOfCongruentBallsInEuclideanThreeSpace(P ) and dens-
ityOf(P ) is greater than densityOf(theFacecenteredCubicPacking))

¡ :9P (packing(P)^greaterThan(density(P),density(faceenteredPacking)))

¡ :9P (p(P )^ g(d(P ); d(P0)))

Parsing natural language statements into understandable form is a process that humans
perform constantly. Computer implementations of such parsings indicate the complexity
of the process.

Formal mathematical statements consist of symbols, just like ordinary sentences are
sequences of alphabetic letters. In our example, the symbols are

:; 9; P ; (; ); p;^; ::::
and also

isAPackingOfCongruentBallsInEuclideanThreeSpace; densityOf; :::

Symbols stand for natural language words or even multi-word natural language phrases.
Sentences formed of words and phrases correspond to words, i.e., sequences of symbols in
the formal language.

We treat symbols and words as mathematical objects. The study of the formal prop-
erties of symbols, words, sentences,... is called syntax . Syntax will later be related to the
�meaning� of symbolic material, its semantics. The interplay between syntax and semantics
is at the core of logic. A strong logic is able to present interesting semantic properties, i.e.,
properties of interesting mathematical structure, already in its syntax.

2.2 Symbols
�Man muÿ jederzeit an Stelle
von 'Punkte, Geraden, Ebenen',
'Tische, Stühle, Bierseidel' sagen
können�.
Quote ascribed to David Hilbert

The Syntax of first-order logic: Symbols, words, and formulas 5



Basic Notions. We introduce basic logical symbols:

¡ A symbol is a mathematical object;

¡ �;:;!;?; 8; (; ) are symbols;

¡ vn is a symbol for n2N;

¡ let Var= fvnjn2Ng be the class of variables;

¡ all symbols introduced so far are pairwise distinct.

Let S0 be the class of basic symbols.

¡ A relation symbol is a symbol; a relation symbol R has an arity ar(R)2N;

¡ a propositional constant is a relation symbol with arity 0;

¡ a function symbol is a symbol; a function symbol f has an arity ar(f)2N;

¡ a constant symbol is a function symbol with arity 0.

¡ The classes of basic symbols, relation symbols and function symbols are pairwise
disjoint.

A language is a class of relation symbols and function symbols.

Note that we do not specify the notion of symbol any further. This leaves room for
freedom, so that we can treat �facecenteredPacking� as a symbol, as well as 
 or +;¡; :::.
Some symbols have some convential functionalities: 6 is usually taken as a binary relation
symbol, i.e., ar(6)=2, and moreover is usually interpreted as some partial order.

We are now able to de�ne speci�c languages:

De�nition 2. The language of group theory is the language

SGr= f�; eg;

where � is a �xed binary function symbol and e is a �xed constant symbol.

De�nition 3. The language of ordered �elds is

SOF= f6;+; �; 0; 1g

where 6 is a binary relation symbol, +; � are binary function symbols, and 0;1 are constant
symbols.

Note 4. We are deliberately unspeci�c about the nature of mathematical objects and
symbols. This allows to conduct logic within any theory that formalizes the notions intro-
duced here. We shall use this later to obtain circular situations, where, e.g., the logic of
set theory can be carried out within set theory. Such situations are the basis for the Gödel
incompleteness theorems.

2.3 Words
Words:
A letter and a letter on a string
Will hold forever humanity spell-
bound
The Real Group

6 Section 2



De�nition 5. Let S be a language. A word over S is a �nite sequence w= w0w1:::wn¡1
of symbols w0; :::; wn¡1 2 S0 [ S. The natural number n is the length of w, we also write
jwj=n.

The empty word is the unique sequence � with j�j=0. Let S� be the class of all words
over S.

De�nition 6. Let w=w0w1:::wm¡1 and w 0=w00w10 :::wn¡10 be words over S. Then the word

w
�
w 0=w0w1:::wm¡1w00w10 :::wn¡10

is the concatenation of w and w 0: jw
�
w 0j=m+n and

(w
�
w 0)i=

�
wi , if i<m
wi¡m , if m6 i <m+n

We also write ww 0 instead of w
�
w 0.

If we consider words over fj g of the form jj :::j then their concatenation corresponds to
addition of natural numbers. Numbers in decimal notation are words over f0;1;2;3;4;5;6;
7;8;9g; a decimal addition 99+8=107 is a symbolic operation of words, which corresponds
to the addition operation in the natural numbers.

Exercise 1. The operation of concatenation satis�es some canonical laws:

a)
�
is associative: (ww 0)w 00=w(w 0w 00).

b) ; is a neutral element for
�
: ;w=w;=w.

c)
�
satis�es cancelation: if uw=u0w then u=u0; if wu=wu0 then u=u0.

2.4 Terms

Fix a language S.

De�nition 7. The class TS of S-terms is the smallest subclass of S� such that

a) x2TS for all variables x;

b) ft0:::tn¡1 2 TS for all n 2 N, all n-ary function symbols f 2 S, and all t0; :::;
tn¡12TS.

Terms are written in Polish notation, meaning that function symbols come �rst and
that no brackets are needed. Polish notation uses bracket-less pre�x notations like +v0v1,
whereas in algebra binary function symbols are usually written in�x : v0+ v1 .

Terms in TS have unique readings according to the following

Lemma 8. For every term t2TS exactly one of the following holds:

a) t is a variable;

b) there is a uniquely de�ned function symbol f 2 S and a uniquely de�ned sequence
t0; :::; tn¡12T S of terms, where f is n-ary, such that t= ft0:::tn¡1 .

Proof. Exercise. �

The Syntax of first-order logic: Symbols, words, and formulas 7



Remark 9. Unique readability is essential for working with terms. Therefore if this Lemma
would not hold one would have to alter the de�nition of terms or �nd workarounds.

Example 10. For the language SGr= f�; eg of group theory, terms in TSGr look like

e; v0; v1; :::; �ee; �evm ; �vm e ; �ee ; �e�ee ; :::; �vi �vj vk ; ��vi vj vk ; ::::

The standard in�x notation (t0; t1) 7! t0 � t1 for terms does not have unique readability.
The term v0 � v1 � v2 can be read as

v0 � v1 � v2=(v0 � v1) � v2 or v0 � v1 � v2= v0 � (v1 � v2):

This corresponds to ��v0v1v2 and �v0 � v1v2 in Polish notation. In contexts where the
operation � is associative, this might be �ne and one may �leave out� some brackets.

Exercise 2. Show that every term t2TSGr has odd length 2 n+1 where n is the number of �-symbols
in t.

2.5 Formulas

De�nition 11. The class LS of all S-formulas is the smallest subclass of S� such that

a) ?2LS (the false formula);

b) t0� t12LS for all S-terms t0; t12T S (equality);

c) Rt0:::tn¡12LS for all n-ary relation symbols R2S and all S-terms t0; :::; tn¡12TS
(relational formula);

d) :'2LS for all '2LS (negation);

e) ('!  )2LS for all ';  2LS (implication);

f ) 8x'2LS for all '2LS and all variables x (universal quanti�cation).

LS is also called the �rst-order language over S. Formulas produced by conditions a) -
c) only are called atomic formulas since they constitute the initial steps of the formula
calculus.

We restrict the language LS to just the logical connectives ?, : and !, and the
quanti�er 8. The next de�nition introduces other connectives and quanti�ers as convenient
abbreviations for formulas in LS. For theoretical considerations it is however advantageous
to work with a �small� language.

De�nition 12. For S-formulas ' and  and a variable x write

¡ > (�true�) instead of :? ;

¡ ('_  ) (�' or  �) instead of (:'!  ) is the disjunction of ';  ;

¡ ('^  ) (�' and  �) instead of :('!: ) is the conjunction of ';  ;

¡ ('$  ) (�' i�  �) instead of (('!  )^ ( ! ') ) is the equivalence of ';  ;

¡ 9x' (�for all x holds '�) instead of :8x:' is an existential quanti�cation.

For the sake of simplicity one often omits redundant brackets, in particular outer
brackets. So we usually write '_  instead of ('_  ).

Exercise 3. Formulate and prove the unique readability of formulas in LS.

8 Section 2



Exercise 4. Formulate the standard axioms of group theory in LSGr.

3 Semantics

We shall interpret formulas like 8y9xy= g(f(x)) in adequate structures. The interaction
between language and structures is also called semantics. Technically it will consist in
�mapping� all syntactic material to semantic material centered around structures. We shall
obtain a schema like:

8 domain A of a structure A

variable element of A
function symbol function on A
relation symbol relation on A
term element of A
formula truth value
... ...

Fix a language S.

De�nition 13. An S-structure A is determined by its �components�:

a) a nonempty set jAj; jAj is called the underlying set or the domain of A and is
often denoted by a corresponding plain letter, e.g., A;

b) an n-ary relation RA on A for every n-ary relation symbol R2S; i.e., RA�An;

c) an n-ary function fA on A for every n-ary function symbol f 2S; i.e., fA:An!A.

Again we use customary and convenient notations for structures. In simple cases, one
may simply list the components of the structure. If, e.g., when S=fR0;R1; f g we may write

A=(A;R0A; R1A; fA)

or �A has domain A with relations R0
A; R1

A and an operation fA �.
A constant symbol c 2 S is interpreted by a 0-ary function cA: A0 = f0g ! A which

is de�ned for the single argument 0 and takes a single value cA(0) in A. It is natural to
identify the function cA with ist constant value cA(0) and agree that cA2A .

One often uses the same notation for a structure and its underlying set like in

A=(A;R0A; R1A; fA):

This �overloading� of notation is common in mathematics (and in natural language). Usu-
ally a reader is able to detect and �disambiguate� ambiguities introduced by multiple
usage. There are techniques in computer science to deal with overloading, e.g., by typing of
notions. Another common overloading is the naive identi�cation of syntax and semantics,
i.e., by writing

A=(A;R0; R1; f) instead of A=(A;R0A; R1A; fA)

Since we are particularly interested in the interplay of syntax and semantics we shall try
to avoid this kind of overloading.

Example 14. De�ne the language of Boolean algebras by

SBA= f^;_;¡; 0; 1g

Semantics 9



where ^ and _ are binary function symbols for �and� and �or�, ¡ is a unary function symbol
for �not�, and 0 and 1 are constant symbols. A Boolean algebra of particular importance
in logic is the algebra B of truth values. Let B = jBj= fF;Tg with F= 0B(=false) and
T=1B(=true). De�ne the operations and =^B, or =_B, and not =¡B by operation tables
in analogy with standard multiplication tables:

and F T

F F F
T F T

,
or F T

F F T
T T T

, and
not
F T
T F

:

Note that we use the non-exclusive �or� instead of the exclusive �either - or�.

Exercise 5. Show that every truth-function F : Bn ! B can be obtained as a composition of the
functions and and not.

The notion of structure leads to derived de�nitions.

De�nition 15. Let A be an S-structure and A0 be an S 0-structure. Then A is a reduct
of A0, or A0 is an expansion of A, if

¡ S �S 0;

¡ jAj= jA0j;

¡ RA=RA0 for every relation symbol R2S;

¡ fA= fA
0
for every function symbol f 2S:

According to this de�nition, the additive group (R;+;0) of reals is a reduct of the �eld
(R;+; �; 0; 1).

De�nition 16. Let A;B be S-structures. Then A is a substructure of B, A�B, if B
is a pointwise extension of A, i.e.,

a) A= jAj� jBj;

b) for every n-ary relation symbol R2S we have RA=RB\An;

c) for every n-ary function symbol f 2S we have fA= fB�An.

Note that the substructure A of B is determined by its domain A. Also, A needs to be
closed under the functions fB for f a function symbol in S.

De�nition 17. Let A;B be S-structures and h: jAj ! jBj. Then h is a homomorphism
from A into B, h:A!B, if

a) for every n-ary relation symbol R2S and for every a0; :::; an¡12A

RA(a0; :::; an¡1) implies RB(h(a0); :::; h(an¡1));

b) for every n-ary function symbol f 2S and for every a0; :::; an¡12A

fB(h(a0); :::; h(an¡1))=h(fA(a0; :::; an¡1)):

h is an embedding of A into B, h:A ,!B, if moreover

a) h is injective;
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b) for every n-ary relation symbol R2S and for every a0; :::; an¡12A

RA(a0; :::; an¡1) i� RB(h(a0); :::; h(an¡1)):

If h is also bijective, it is called an isomorphism.

Exercise 6. A composition of homomorphisms is a homomorphism. What about products of structures?
The embedding of A into the diagonal of A � A is a homomorphism. Direct limits? Homomorphism
into direct limit.

4 The satisfaction relation

�What is truth?� Pilate asked.
John 18:38

An S-structure interprets the symbols in S. To interpret a formula in a structure, one
also has to interpret the (occuring) variables.

De�nition 18. Let S be a language. An S-model M is an S-structure together with values
vn
M2M for every n2N. The function n 7! vn

M is an assignment of variables.
We shall need to modify the values of a model M at speci�c variables: For pairwise

distinct variables x0; :::; xr¡12Var and a0; :::; ar¡12M de�ne

M0=M
a0:::ar¡1
x0:::xr¡1

by letting M0=M as S-structures and, for n2N,

vn
M0
=

(
ai , if vn=xi for some index i < r

vn
M , else

We now de�ne the semantics of �rst-order languages by interpreting terms and formulas
in models.

De�nition 19. Let M be an S-model. De�ne the interpretation tM2M of a term t2TS
by recursion:

a) for t a variable, tM is already de�ned;

b) for an n-ary function symbol and terms t0; :::; tn¡12T S, let

(ft0::::tn¡1)M= fM(t0M; :::; tn¡1M ):

This explains, e.g., the interpretation of a term like v32 + v200
3 in the reals under an

assignment of variables.

De�nition 20. Let M be an S-model. De�ne the interpretation 'M 2 B of a formula
'2LS, where B=fF;Tg is the Boolean algebra of truth values, by recursion on the formula
calculus:

a) ?M=F ;

The satisfaction relation 11



b) for terms t0; t12T S: (t0� t1)M=T i� t0
M= t1M;

c) for every n-ary relation symbol R2S and terms t0; :::; t12TS

(Rt0:::tn¡1)M=T i� RM(t0M; :::; tn¡1M );

d) (:')M=T i� 'M=F ;

e) ('!  )M=T i� 'M=T implies  M=T;

f ) (8vn')M=T i� for all a2M we have '
M

a

vn =T.

We write M� ' instead of 'M=T. We also say that M satis�es ' or that ' holds in M
or that ' is true in M. For ��LS write M�� i� M� ' for every '2�.

De�nition 21. Let S be a language and ��LS. � is universally valid if � holds in every
S-model. � is satis�able if there is an S-model M such that M��.

The language extension by the (abbreviating) symbols _;^;$;9 is consistent with the
expected meanings of the additional symbols:

Exercise 7. Prove:

a) M�('_  ) i� M�' or M �  ;

b) M � ('^  ) i� M � ' and M �  ;

c) M�('$  ) i� M � ' is equivalent to M �  ;

d) M � 9vn' i� there exists a2 jMj such that M
a

vn
� '.

With the notion of � we can now formally de�ne what it means for a structure to be
a group or for a function to be di�erentiable. Before considering examples we make some
auxiliary de�nitions and simpli�cations.

It is intuitively obvious that the interpretation of a term only depends on the occuring
variables, and that satisfaction for a formula only depends on its free, non-bound variables.

De�nition 22. For t2TS let var(t) be the �nite set of variables occuring in t.

Theorem 23. Let t be an S-term and let M and M0 be S-models which agree as S-
structures. Assume xM=xM

0
for all x2 var(t). Then tM= tM

0
.

De�nition 24. Für '2LS de�ne the set of free variables free(')�fvnjn2Ng by recursion
on (the lengths of) formulas:

¡ free(?)= ;

¡ free(t0� t1)= var(t0)[ var(t1);

¡ free(Rt0:::tn¡1)= var( t0)[ :::[ var(tn¡1);

¡ free(:')= free(');

¡ free('!  )= free(')[ free( ).

¡ free(8x')= free(') n fxg.

For ��LS de�ne the class free(�) of free variables as

free(�)=
[
'2�

free(') :
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Example 25.

free(Ryx!8y:y= z) = free(Ryx)[ free(8y:y= z)
= free(Ryx)[ (free(:y= z) n fyg)
= free(Ryx)[ (free( y= z) n fyg)
= fy; xg[ (fy; zg n fyg)
= fy; xg[fzg
= fx; y; zg:

De�nition 26.

a) For n2N let Ln
S= f'2LS j free(')�fv0; :::; vn¡1gg.

b) '2LS is an S-sentence if free(')= ;; L0S is the class of S-sentences.

Theorem 27. Let t be an S-term and let M and M0 be S-models which agree as S-
structures. Assume xM=xM

0
for all x2 free(t).Then

M� ' i� M0� ':

Proof. By induction on '.
'= t0� t1: Then var(t0)[ var(t1)= free(') and

M� ' i� t0
M= t1M

i� t0
M0
= t1M

0
by the previous Theorem,

i� M0� ':

'=  ! � and assume the claim to be true for  and �. Then

M� ' i� M�  implies M� �
i� M0�  implies M0� � by the inductive assumption,
i� M0� ':

'= 8vn and assume the claim to be true for  . Then free( )� free(') [ fvng. For all
a2jMj: M a

vn
� free( )=M0 a

vn
� free( ), i.e., the structures agree on the free variables of  ,

M� ' i� for all a2M holds M
a
vn
�  

i� for all a2M holds M0 a
vn
�  by the inductive assumption,

i� M0� ':
�

This allows further simpli�cations in notations for �:

De�nition 28. Let A be an S-structure and let (a0; :::; an¡1) be a sequence of elements
of A. Let t be an S-term with var(t)�fv0; :::; vn¡1g. Then de�ne

tA[a0; :::; an¡1]= tM;
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where the model M is the structure A together with some (or any) assignment such that
v0
M= a0 ; :::; vn¡1M = an¡1.

Let ' be an S-formula with free(')�fv0; :::; vn¡1g. Then de�ne

A� '[a0; :::; an¡1] i� M� ';

where the model M is the structure A together with some (or any) assignment such that
v0
M= a0 ; :::; vn¡1M = an¡1.
In case n = 0 we also write tA instead of tA[a0; :::; an¡1], and A � ' instead of

A� '[a0; :::; an¡1]. In the latter case we also say: A is a model of ', A satis�es ' or ' is
true in A.

For ��L0S a class of sentences also write

A�� i� for all '2� holds:A� ':

Example 29. Groups. SGr: =f�; eg with a binary function symbol � and a constant
symbol e is the language of groups theory. The group axioms are

a) 8v08v1 8v2 �v0 � v1v2���v0v1v2 ;
b) 8v0 �v0 e� v0 ;
c) 8v09v1 �v0v1� e .

This de�nes the axiom set

�Gr= f8v0 8v1 8v2 �v0 � v1v2���v0v1v2; 8v0 �v0 e� v0t0M:::tr¡1M ; 8v09v1 �v0v1� eg:

An S-structureG=(G;�; k)=(G;�G; eG) satis�es �Gr i� it is a group in the ordinary sense.

De�nition 30. Let S be a language and let ��L0S be a class of S-sentences. Then

ModS�= fA jA is an S-structure and A��g

is the model class of �. In case � = f'g we also write ModS' instead of ModS�. We
also say that � is an axiom system for ModS�, or that � axiomatizes the class ModS� .

Thus ModSGr�Gr is the model class of all groups. Model classes are studied in generality
within model theory which is a branch of mathematical logic. For speci�c axiom systems
� the model class ModS� is examined in sub�elds of mathematics: group theory, ring
theory, graph theory, etc. Some typical questions questions are: is ModS� =/ ;, i.e., is �
satis�able? What are the elements of ModS� ? Can one classify the isomorphism classes
of models? What are the cardinalities of models?

Exercise 8. One may consider ModS� with appropriate morphisms as a category. In certain cases
this category has closure properties like closure under products. One can give the categorial de�nition
of cartesian product and show their existence under certain assumptions on � .

5 Logical implication and propositional connectives
The design of the following treatise is to investigate the
fundamental laws of those operations of the mind by which
reasoning is performed; to give expression to them in the
symbolical language of a Calculus, and upon this found-
ation to establish the science of Logic and construct its
method.
George Boole, The Laws of Thought
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De�nition 31. For a symbol class S and � � LS and ' 2 LS de�ne that � (logically)
implies ' (�� ') i� every S-model I�� is also a model of '.

Note that logical implication � is a relation between syntactical entities which is de�ned
via the semantic notion of interpretation. The relation �� ? can be viewed as the central
relation in modern axiomatic mathematics: given the assumptions � what do they imply?
The � -relation is usually veri�ed by mathematical proofs. These proofs seem to refer to
the exploration of some domain of mathematical objects and, in practice, require particular
mathematical skills and ingenuity.

We will however show that the logical implication � satis�es certain simple syntactical
laws. These laws correspond to ordinary proof methods but are purely formal. Amazingly a
�nite list of methods will (in principle) su�ce for all mathematical proofs. This is Gödel's
completeness theorem that we shall prove later.

Theorem 32. Let S be a language, t2TS, ';  2LS, and ¡;��LS. Then
a) (Monotonicity) If ¡�� and ¡� ' then �� '.
b) (Assumption property) If '2¡ then ¡� '.
c) (!-Introduction) If ¡[ '�  then ¡� ('!  ).

d) (!-Elimination) If ¡� ' and ¡� ('!  ) then ¡�  .
e) (?-Introduction) If ¡� ' and ¡�:' then ¡�? .

f ) (?-Elimination) If ¡[f:'g�? then ¡� '.
g) (�-Introduction) ¡� t� t .

Proof. f) Assume ¡[f:'g�? . Consider an S-model with M�¡. Assume that M2 '.
Then M � :' . M � ¡ [ f:'g, and by assumption, M �? . But by the de�nition of the
satisfaction relation, this is false. Thus M� ' . Thus ¡� ' . �

Exercise 9. There are similar rules for the introduction and elimination of junctors like ^ and _ that
we have introduced as abbreviations:

a) (^-Introduction) If ¡� ' and ¡�  then ¡� '^  .
b) (^-Elimination) If ¡� '^  then ¡ � ' and ¡�  .
c) (_-Introduction) If ¡� ' then ¡� '_  and ¡�  _ '.
d) (_-Elimination) If ¡� '_  and ¡`:' then ¡�  .

6 Substitution and term rules

To prove further rules for equality and quanti�cation, we �rst have to consider the substi-
tution of terms in formulas.

De�nition 33. For a term s2TS, pairwise distinct variables x0; :::; xr¡1 and terms t0; :::;
tr¡12TS de�ne the (simultaneous) substitution

s
t0::::tr¡1
x0:::xr¡1

of t0; :::; tr¡1 for x0; :::; xr¡1 by recursion:

a) x t0::::tr¡1
x0:::xr¡1

=
�
x; if x=/ x0; :::; x=/ xr¡1
ti ; if x=xi

for all variables x;
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b) (fs0:::sn¡1)
t0::::tr¡1
x0:::xr¡1

= fs0
t0::::tr¡1
x0:::xr¡1

:::sn¡1
t0::::tr¡1
x0:::xr¡1

for all n-ary function symbols
f 2S .

Note that the simultaneous substitution

s
t0::::tr¡1
x0:::xr¡1

is in general di�erent from a successive substitution

s
t0
x0

t1
x1
:::
tr¡1
xr¡1

which depends on the order of substitution. E.g., x yx

xy
= y, x y

x

x

y
= y

x

y
= x and

x
x

y

y

x
=x y

x
= y.

The following substitution theorem shows that syntactic substitution corresponds
semantically to a (simultaneous) modi�cation of assignments by interpreted terms.

Theorem 34. Consider an S-model M, pairwise distinct variables x0; :::; xr¡1 and terms
t0; :::; tr¡12T S. Then for any S-term s :

M(s t0:::tr¡1
x0:::xr¡1

)=M
t0
M:::tr¡1

M

x0:::xr¡1
(s):

Proof. By induction on the complexity of s.
Case 1 : s=x.
Case 1.1 : x2/ fx0; :::; xr¡1g. Then

M(x t0:::tr¡1
x0:::xr¡1

)=M(x)=M
t0
M:::tr¡1

M

x0:::xr¡1
(x):

Case 1.2 : x=xi . Then

M(x t0:::tr¡1
x0:::xr¡1

)=M(ti)=M
t0
M:::tr¡1

M

x0:::xr¡1
(xi)=M

t0
M:::tr¡1

M

x0:::xr¡1
(x):

Case 2 : s = fs0:::sn¡1 where f 2 S is an n-ary function symbol and the terms s0; :::;
sn¡12TS satisfy the theorem. Then

M((fs0:::sn¡1)
t0:::tr¡1
x0:::xr¡1

) = M(fs0
t0:::tr¡1
x0:::xr¡1

:::sn¡1
t0:::tr¡1
x0:::xr¡1

)

= fM(M(s0
t0:::tr¡1
x0:::xr¡1

); :::;M(sn¡1
t0:::tr¡1
x0:::xr¡1

))

= M(f)(M t0
M:::tr¡1

M

x0:::xr¡1
(s0);

:::;M
t0
M:::tr¡1

M

x0:::xr¡1
(sn¡1))

= M
t0
M:::tr¡1

M

x0:::xr¡1
(fs0:::sn¡1):

�

De�nition 35. For a formula ' 2 LS, pairwise distinct variables x0; :::; xr¡1 and terms
t0; :::; tr¡12T S de�ne the (simultaneous) substitution

'
t0::::tr¡1
x0:::xr¡1
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of t0; :::; tr¡1 for x0; :::; xr¡1 by recursion:

a) (s0� s1) t0::::tr¡1x0:::xr¡1
=s0

t0::::tr¡1
x0:::xr¡1

� s1 t0::::tr¡1x0:::xr¡1
for all terms s0; s12TS;

b) (Rs0:::sn¡1)
t0::::tr¡1
x0:::xr¡1

=Rs0
t0::::tr¡1
x0:::xr¡1

:::sn¡1
t0::::tr¡1
x0:::xr¡1

for all n-ary relation symbols

R2 s and terms s0; :::; sn¡12T S;

c) (:') t0::::tr¡1
x0:::xr¡1

=:(' t0::::tr¡1
x0:::xr¡1

);

d) ('!  ) t0::::tr¡1
x0:::xr¡1

=(' t0::::tr¡1
x0:::xr¡1

! 
t0::::tr¡1
x0:::xr¡1

);

e) for (8x') t0::::tr¡1
x0:::xr¡1

we proceed in two steps: let xi0; :::; xis¡1 with i0 < ::: < is¡1 be

exactly those xi which are �relevant� for the substitution, i.e., xi 2 free(8x') and
xi=/ ti .

¡ if x does not occur in ti0; ::::; tis¡1 , then set

(8x') t0::::tr¡1
x0:::xr¡1

=8x (' ti0::::tis¡1
xi0:::xis¡1

):

¡ if x does occur in ti0; ::::; tis¡1 , then let k2N minimal such that vk does not
occur in ', ti0; ::::; tis¡1 and set

(8x') t0::::tr¡1
x0:::xr¡1

= 8vk ('
ti0::::tis¡1vk
xi0:::xis¡1x

):

The substitution theorem for formulas again shows that syntactic substitutions and a
modi�cations of assignments correspond. The de�nition of substitution is designed to make
the substitution theorem true. There are variants of the syntactical substitution which
would also satisfy the substitution theorem.

Theorem 36. Consider an S-model M, pairwise distinct variables x0; :::; xr¡1 and terms
t0; :::; tr¡12T S. If '2LS is a formula,

M� ' t0:::tr¡1
x0:::xr¡1

i� M
t0
M:::tr¡1

M

x0:::xr¡1
� ':

Proof. By induction on the complexity of '. There is nothing to show for '=? .
Case 1 : '=Rs0:::sn¡1 . Then

M� (Rs0:::sn¡1)
t0::::tr¡1
x0:::xr¡1

i� M�Rs0
t0::::tr¡1
x0:::xr¡1

:::sn¡1
t0::::tr¡1
x0:::xr¡1

i� RM

�
M(s0

t0::::tr¡1
x0:::xr¡1

); :::;M(s1
t0::::tr¡1
x0:::xr¡1

)
�

i� RM

 
M
t0
M:::tr¡1

M

x0:::xr¡1
(s0);

:::;M
t0
M:::tr¡1

M

x0:::xr¡1
(sn¡1)

!

i� M
t0
M:::tr¡1

M

x0:::xr¡1
�Rs0:::sn¡1
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Equations s0 � s1 can be treated as a special case of the relational case. Propositional
combinations of formulas by ? , : and! behave similar to terms; indeed formulas can be
viewed as terms whose values are truth values. So we are left with universal quanti�cation.
Case 2 : '=(8x ) t0::::tr¡1

x0:::xr¡1
, assuming that the theorem holds for  .

We proceed according to our de�nition of syntactic substitution. Let xi0; :::; xis¡1 with
i0< ::: < is¡1 be exactly those xi such that xi2 free(8x ) and xi=/ ti . Since

M
t0
M:::tr¡1

M

x0:::xr¡1
� ' i� M

ti0
M:::tir¡1

M

xi0:::xis¡1
� ';

we can assume that (x0; :::; xr¡1)= (xi0; :::; xis¡1), i.e., every xi is free in 8x , xi=/ x, and
xi=/ ti . Now follow the two cases in the de�nition of the substitution:

Case 2.1 : The variable x does not occur in t0; ::::; tr¡1 and

(8x ) t0::::tr¡1
x0:::xr¡1

= 8x ( t0::::tr¡1
x0:::xr¡1

):

M� (8x ) t0:::tr¡1
x0:::xr¡1

i� M�8x ( t0:::tr¡1
x0:::xr¡1

)

i� for all a2M holds M
a
x
�  t0:::tr¡1

x0:::xr¡1

(de�nition of �)
i� for all a2M holds

(Ma

x
)
t0
M

a

x:::tr¡1
M

a

x

x0:::xr¡1
�  

(by the inductive hypothesis for  )
i� for all a2M holds

(Ma
x
)
t0
M:::tr¡1

M

x0:::xr¡1
�  

(since x does not occur in ti)
i� for all a2M holds

M
t0
M:::tr¡1

M a

x0:::xr¡1x
�  

(since x does not occur in x0; :::; xr¡1)
i� for all a2M holds

(M
t0
M:::tr¡1

M

x0:::xr¡1
) a
x
�  

(by simple properties of assignments)

i� M
t0
M:::tr¡1

M

x0:::xr¡1
�8x 

Case 2.2 : The variable x occurs in t0; ::::; tr¡1 . Then

(8x ) t0::::tr¡1
x0:::xr¡1

= 8vk ( 
t0::::tr¡1vk
x0:::xr¡1x

);
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where k 2N is minimal such that vk does not occur in ', ti0; ::::; tis¡1 .

M� (8x ) t0:::tr¡1
x0:::xr¡1

i� M�8vk ( 
t0::::tr¡1vk
x0:::xr¡1x

)

i� for all a2M holds M
a
vk
�  t0:::tr¡1vk

x0:::xr¡1x

i� for all a2M holds

(M a
vk
)
t0
M

a

vk:::tr¡1
M

a

vk vk
M

a

vk

x0:::xr¡1x
�  

(inductive hypothesis for  )
i� for all a2M holds

(Ma
x
)
t0
M:::tr¡1

M a

x0:::xr¡1x
�  

(since vk does not occur in ti)
i� for all a2M holds

M
t0
M:::tr¡1

M a

x0:::xr¡1x
�  

(since x is anyway sent to a)
i� for all a2M holds

(M
t0
M:::tr¡1

M

x0:::xr¡1
) a
x
�  

(by simple properties of assignments)

i� M
t0
M:::tr¡1

M

x0:::xr¡1
�8x 

�

We can now formulate properties of the � relation in connection with the treatment of
variables.

Theorem 37. Let S be a language. Let x; y be variables, t; t 02 TS, '2LS, and ¡�LS.
Then:

a) (8-Introduction) If ¡� ' y
x
and y2/ free(¡[f8x'g) then ¡� 8x' .

b) (8-elimination) If ¡�8x' then ¡� ' t

x
.

c) (�-Elimination or substitution) If ¡� ' t

x
and ¡� t� t 0 then ¡� ' t

0

x
.

Proof. a) Assume ¡� ' y

x
and y2/ free(¡[f8x'g). Consider an S-model M with M�¡.

Let a2M = jMj. Since y2/ free(¡), Ma

y
�¡. By assumption, Ma

y
�' y

x
. By the substitution

theorem,

(M a
y
) y

M
a

y

x
�' and so (M a

y
) a
x
�'

Case 1 : x= y. Then M
a

x
�'.

Case 2 : x=/ y. Then M
aa

yx
�', and since y 2/ free(') we have M

a

x
�'.
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Since a2M is arbitrary, M�8x'. Thus ¡�8x'.
b) Let ¡�8x' . Consider an S-model M with M�¡. For all a2M = jMj holds M a

x
�' .

In particular M tM

x
�' . By the substitution theorem, M� ' t

x
. Thus ¡� ' t

x
.

c) Let ¡� ' t

x
and ¡� t� t 0. Consider an S-model M mit M�¡. By assumption M� ' t

x

and M� t� t 0. By the substitution theorem

M
tM

x
�':

Since tM= t 0M,

M
t 0
M

x
�'

and again by the substitution theorem

M� 't
0

x
:

Thus ¡� ' t 0

x
. �

Note that in proving these proof rules we have used corresponding forms of arguments in
the language of our discourse. This �circularity� was noted before and is a general feature in
formalizations of logic. A particularly important method of proof is the 8-introduction: to
prove a universal statement 8x' it su�ces to consider an �arbitrary but �xed� y and prove
the claim for y . Formally this corresponds to using a �new� variable y2/ free(¡[f8x'g).

7 A sequent calculus

The only way to rectify our reasonings is to make
them as tangible as those of the Mathematicians,
so that we can �nd our error at a glance, and when
there are disputes among persons, we can simply
say: Let us calculate [calculemus], without further
ado, to see who is right. G.W. Leibniz

We can put the rules of implication established in the previous two sections together
as a calculus which leads from correct implications � � ' to further correct implications
�0 � '0. Our sequent calculus will work on sequents (¡; ') of formulas, whose intuitive
meaning is that ¡ implies ' . The Gödel completeness theorem shows that the rules from
the last section actually generate the implication relation � . Fix a language S.

De�nition 38. A pair (¡; ') where ¡ is a �nite set of S-formulas and ' is an S-formula
is called a sequent. ¡ = f'0; :::; 'n¡1g is the antecedent and ' is the succedent of the
sequent. We also write ¡', or '0 :::'n¡1 ' instead of (¡; '). Moreover we may denote
an antecedent of the form ¡[f g also by ¡ .

A sequent ¡' is correct if ¡� '.

Exercise 10. One could also de�ne a sequent to be the concatenation of �nitely many formulas

De�nition 39. The sequent calculus consists of the following (sequent-)rules, which trans-
form given sequents, the premisses, into another sequent, the conclusion. We write the
premisses on top of a bar, and the conclusions underneath.

¡ monotonicity (MR)
¡ '

¡0 '
, if ¡�¡0
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¡ assumption (AR)
¡ '

, if '2¡

¡ !-introduction (!I) ¡[f'g  

¡ '!  

¡ !-elimination (!E)
¡ '
¡ '!  
¡  

¡ ?-introduction (?I)
¡ '
¡ :'
¡ ?

¡ ?-elimination (?E) ¡[f:'g ?
¡ '

¡ 8-introduction (8I) ¡ '
y

x

¡ 8x'
, if y2/ free(¡[f8x'g)

¡ 8-elimination (8E)
¡ 8x'
¡ '

t

x

, if t2TS

¡ �-introduction (�I)
¡ t� t , if t2TS

¡ �-elimination (�E)
¡ '

t

x

¡ t� t 0

¡ '
t 0

x

One can view these rules as functions on sequents.

De�nition 40. A formula '2LS is derivable from ¡�LS, ¡`' , i� there is a derivation
or a formal proof

(¡0'0;¡1'1; :::;¡k¡1'k¡1)

in which every sequent ¡i'i is generated by a sequent rule from sequents ¡i0'i0; :::;¡in¡1'in¡1
with i0; :::; in¡1<i , and where ¡k¡1�¡ and 'k¡1= ' .

For � an arbitrary class of formulas de�ne � ` ' i� there is a �nite ¡�� such that
¡ ` ' . We say that ' can be deduced or derived from ¡ or �, resp. We also write `'
instead of ;` ' and say that ' is a tautology.

We usually write the derivation (¡0'0;¡1'1; :::;¡k¡1'k¡1) as a vertical scheme

¡0 '0
¡1 '1
���
¡k¡1 'k¡1

where we may also put rules and other remarks along the course of the derivation.
In our theorems on the laws of implication we have already shown:
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Theorem 41. The sequent calculus is correct, i.e., every rule of the sequent calculus leads
from correct sequents to correct sequents. Thus every derivable sequent is correct. In terms
of the relations of derivability and logical implication this means that

`��:

The converse inclusion corresponds to

De�nition 42. The sequent calculus is complete i� ��`.

The Gödel completeness theorem will prove the completeness of the sequent calculus,
and thus �=`.

Note that the relation � is de�ned semantically by ranging over all S-models, which is
a proper class, possibly including models of high cardinalities, and models which cannot
be constructed in any obvious sense.

The relation ` is syntactical and de�ned by �concrete� �nitary proofs: �nite sequences
of sequents, which obey simple syntactical rules. The rules can be implemented straight-
forwardly on computers working with sequences of symbols.

It is surprising that these relations agree. Once one has established that �=`, simple
properties of ` carry over to � and vice versa.

8 Derivable sequent rules
The composition of rules of the sequent calculus yields derived sequent rules which are
again correct. First note:

Lemma 43. Assume that
¡ '0
���
¡ 'k¡1
¡ 'k

is a derived rule of the sequent calculus. Then

¡0 '0
���
¡k¡1 'k¡1
¡ 'k

, where ¡0; :::;¡k¡1�¡

is also a derived rule of the sequent calculus.

Proof. This follows immediately from applications of the monotonicity rule. �

8.1 Auxiliary derived rules
We write the derivation of rules as proofs in the sequent calculus where the premisses of
the derivation are written above the upper horizontal line and the conclusion as last row.

ex falso quodlibet
¡ ?
¡ '

:
1: ¡ ?
2: ¡ :' ?
3: ¡ '
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:-Introduction ¡ ' ?
¡ :' :

1: ¡ ' ?
2: ¡ '!?
3: ¡ ::' ::'
4: ¡ ::' :' :'
5: ¡ ::' :' ?
6: ¡ ::' '
7: ¡ ::' ?
8: ¡ :'

¡ :'
¡ '!  

¡  
¡ '!  

Cut rule
¡ '
¡ '  
¡  

Contraposition
¡ '  
¡ : :'

8.2 Introduction and elimination of _;^; :::
The (abbreviating) logical symbols _, ^, and 9 also possess (derived) introduction and
elimination rules. We list the rules and leave their derivations as exercises.

_-Introduction
¡ '
¡ '_  

_-Introduction
¡  
¡ '_  

_-Elimination
¡ '_  
¡ '! �
¡  ! �
¡ �

^-Introduction
¡ '
¡  
¡ '^  
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^-Elimination
¡ '^  
¡ '

^-Elimination
¡ '^  
¡  

9-Introduction
¡ '

t

x

¡ 9x'
9-Elimination
¡ 9x'
¡ '

y

x
 where y2/ free(¡[f9x';  g)

¡  

8.3 Formal proofs about �
We give some examples of formal proofs which show that within the proof calculus � is
an equivalence relation.

Lemma 44. We prove the following tautologies:

a) Re�exivity: `8xx�x
b) Symmetry: `8x8y(x� y! y�x)
c) Transitivity: `8x8y8z(x� y^ y� z!x� z)

Proof. a)
x�x
8xx�x

b)
x� y x� y
x� y x�x
x� y (z�x)x

z

x� y (z�x) y
x

x� y y�x
x� y! y�x
8y(x� y! y�x)
8x8y(x� y! y�x)

c)
x� y^ y� z x� y^ y� z
x� y^ y� z x� y
x� y^ y� z (x�w) y

w

x� y^ y� z y� z
x� y^ y� z (x�w) z

w

x� y^ y� z x� z
x� y^ y� z!x� z
8z(x� y^ y� z!x� z)
8y8z(x� y ^ y� z!x� z)
8x8y8z(x� y^ y� z!x� z)
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�

We show moreover that � is a congruence relation from the perspective of `.

Theorem 45. Let '2LS and t0; :::; tn¡1; t0
0 ; :::; tn¡1

0 2TS. Then

` t0� t00 ^ :::^ tn¡1� tn¡10 !(' t0:::tn¡1
v0:::vn¡1

$ '
t0
0 :::tn¡1

0

v0:::vn¡1
):

Proof. Choose pairwise distinct �new� variables u0; :::; un¡1 . Then

'
t0:::tn¡1
v0:::vn¡1

=' u0
v0

u1
v1
:::
un¡1
vn¡1

t0
u0

t1
u1
:::

tn¡1
un¡1

and

'
t0
0 :::tn¡1

0

v0:::vn¡1
=' u0

v0

u1
v1
:::
un¡1
vn¡1

t0
0

u0

t1
0

u1
:::

tn¡1
0

un¡1
:

Thus the simultaneous substitutions can be seen as successive substitutions, and the order
of the substitutions ti

ui
may be permuted without a�ecting the �nal outcome. We may use

the substitution rule repeatedly:

'
t0:::tn¡1
v0:::vn¡1

'
t0:::tn¡1
v0:::vn¡1

'
u0
v0
:::
un¡1
vn¡1

t0
u0

:::
tn¡1
un¡1

'
u0
v0
:::
un¡1
vn¡1

t0
u0

:::
tn¡1
un¡1

'
u0
v0
:::
un¡1
vn¡1

t0
u0

:::
tn¡1
un¡1

tn¡1� tn¡10 '
u0
v0
:::
un¡1
vn¡1

t0
u0

:::
tn¡1
0

un¡1
���
'
u0
v0
:::
un¡1
vn¡1

t0
u0

:::
tn¡1
un¡1

tn¡1� tn¡10 ::: t0� t00 '
u0
v0
:::
un¡1
vn¡1

t0
0

u0
:::

tn¡1
0

un¡1

'
t0:::tn¡1
v0:::vn¡1

t0� t00 ::: tn¡1� tn¡10 '
t0
0 :::tn¡1

0

v0:::vn¡1
:

�

9 Consistency

Vor Allem aber möchte ich unter den zahlreichen Fragen,

welche hinsichtlich der Axiome gestellt werden können,
dies als das wichtigste Problem bezeichnen, zu beweisen,
daÿ dieselben untereinander widerspruchslos sind, d.h.
daÿ man auf Grund derselben mittelst einer endlichen
Anzahl von logischen Schlüssen niemals zu Resultaten

gelangen kann, die miteinander in Widerspruch stehen.
David Hilbert

The notion of consistency will be central in proving the Gödel completeness theorem.
We have to show: if �0 ' then �2 ' . �0 ' will mean that �[f:'g is consistent . The
model existence theorem shows the existence of models for consistent sets of formulas. So
there is M��[f:'g and so �2 ' .
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Fix a language S.

De�nition 46. A set ��LS is consistent if �0? . � is inconsistent if �`? .

We prove some laws of consistency.

Lemma 47. Let ��LS and '2LS. Then
a) � is inconsistent i� there is  2LS such that �`  and �`: .
b) �` ' i� �[f:'g is inconsistent.

c) If � is consistent, then �[f'g is consistent or �[f:'g is consistent (or both).

d) Let F be a family of consistent sets which is linearly ordered by inclusion, i.e., for
all �;	2F holds ��	 or 	��. Then

��=
[
�2F

�

is consistent.

Proof. a) Assume �`? . Then by the ex falso rule, �`  and �`: .
Conversely assume that � `  and � ` : for some  2 LS. Then � ` ? by ?-

introduction.
b) Assume � ` ' . Take '0; :::; 'n¡1 2 � such that '0:::'n¡1 ` ' . Then we can extend
a derivation of '0:::'n¡1` ' as follows
'0 ::: 'n¡1 '
'0 ::: 'n¡1 :' :'
'0 ::: 'n¡1 :' ?
and �[f:'g is inconsistent.

Conversely assume that �[f:'g`? and take '0; :::; 'n¡12� such that '0:::'n¡1:
'`? . Then '0:::'n¡1` ' and �` ' .
c) Assume that �[ f'g and �[ f:'g are inconsistent. Then there are '0; :::; 'n¡12�
such that '0:::'n¡1`' and '0:::'n¡1`:'. By the introduction rule for ?, '0:::'n¡1`?.
Thus � is inconsistent.
d) Assume that �� is inconsistent. Take '0; :::; 'n¡1 2 �� such that '0 ::: 'n¡1 ` ? .
Take �0; :::�n¡12F such that '02�0 , ..., 'n¡12�n¡1 . Since F is linearly ordered by
inclusion there is � 2 f�0; :::�n¡1g such that '0; :::; 'n¡1 2 �. Then � is inconsistent,
contradiction. �

The proof of the completeness theorem will be based on the relation between consist-
ency and satis�ability.

Lemma 48. Assume that ��LS is satis�able. Then � is consistent.

Proof. Assume that � `? . By the correctness of the sequent calculus, � �? . Assume
that � is satis�able and let M � � . Then M �? . This contradicts the de�nition of the
satisfaction relation. Thus � is not satis�able. �

We shall later show the converse of this Lemma, since:

Theorem 49. The sequent calculus is complete i� every consistent ��LS is satis�able.

Proof. Assume that the sequent calculus is complete. Let ��LS be consistent, i.e., �0? .
By completeness, �2? , and we can take an S-model M�� such that M2? . Thus � is
satis�able.
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Conversely, assume that every consistent ��LS is satis�able. Assume 	� . Assume
for a contradiction that 	 0  . Then 	[ f: g is consistent. By assumption there is an
S-model M�	[f: g. M�	 and M2  , which contradicts 	�  . Thus 	`  . �

10 Term models and Henkin sets

The following constructions will assume that the class of all terms of some
language is a set. In view of the previous lemma, we strive to construct interpretations for
given sets ��LS of S-formulas. Since we are working in great generality and abstractness,
the only material available for the construction of structures is the language LS itself. We
shall build a model out of S-terms.

De�nition 50. Let S be a language and let ��LS be consistent. The term model T� of
� is the following S-model:

a) De�ne a relation � on TS,

t0� t1 i� �` t0� t1 :

� is an equivalence relation on TS.

b) For t2T S let t�= fs2TS js� tg be the equivalence class of t.

c) The underlying set jT�j of the term model is the set of �-equivalence classes

jT�j= ft�jt2T Sg:

d) For an n-ary relation symbol R2S let RT� on T� be de�ned by

(t�0; :::; t�n¡1)2RT� i� �`Rt0:::tn¡1 :

e) For an n-ary function symbol f 2S let fT
�
on T� be de�ned by

fT
�
(t�0; :::; t�n¡1)= ft0:::tn¡1 :

f ) For n2N de�ne the variable interpretation vn
T�= vn� .

The term model is well-de�ned.

Lemma 51. In the previous construction the following holds:

a) � is an equivalence relation on TS.

b) The de�nition of RT� is independent of representatives.

c) The de�nition of fT
�
is independent of representatives.

Proof. a) We derived the axioms of equivalence relations for �:

¡ `8xx�x

¡ `8x8y (x� y! y�x)

¡ `8x8y8z (x� y^ y� z!x� z)

Consider t2TS. Then `t� t. Thus for all t2TS holds t� t .
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Consider t0; t12T S with t0� t1 . Then `t0� t1 . Also `t0� t1! t1� t0 , `t1� t0 , and
t1� t0 . Thus for all t0; t12TS with t0� t1 holds t1� t0 .

The transitivity of � follows similarly.
b) Let t�0; :::; t�n¡1 2 T�, t�0= s�0; :::; t�n¡1= s�n¡1 and � `Rt0:::tn¡1 . Then `t0� s0 , ... ,
`tn¡1� sn¡1 . Repeated applications of the substitution rule yield �`Rs0:::sn¡1 . Hence
� `Rt0:::tn¡1 implies � `Rs0:::sn¡1 . By the symmetry of the argument, � `Rt0:::tn¡1
i� �`Rs0:::sn¡1 .
c) Let t�0; :::; t�n¡1 2 T� and t�0= s�0; :::; t�n¡1= s�n¡1 . Then `t0� s0 , ... , `tn¡1� sn¡1 .
Repeated applications of the substitution rule to `ft0:::tn¡1� ft0:::tn¡1 yield

`ft0:::tn¡1� fs0:::sn¡1

and ft0:::tn¡1= fs0:::sn¡1 . �

We aim to obtain T� � �. The initial cases of an induction over the complexity of
formulas is given by

Theorem 52.

a) For terms t2TS holds T�(t)= t�.

b) For atomic formulas '2LS holds

T�� ' i� �` ':

Proof. a) By induction on the term calculus. The initial case t = vn is obvious by the
de�nition of the term model. Now consider a term t = ft0:::tn¡1 with an n-ary function
symbol f 2S , and assume that the claim is true for t0; :::; tn¡1 . Then

(ft0:::tn¡1)T
�
= fT

�
(T�(t0); :::;T�(tn¡1))

= fT
�
(t0� ; :::; tn¡1)

= ft0:::tn¡1 :

b) Let '=Rt0:::tn¡1 with an n-ary relation symbol R2S and t0; :::; tn¡12TS. Then

T��Rt0:::tn¡1 i� RT�(T�(t0); :::;T�(tn¡1))

i� RT�(t0� ; :::; tn¡1)
i� �`Rt0:::tn¡1 :

Let '= t0� t1 with t0; t12TS. Then

T�� t0� t1 i� T�(t0)=T�(t1)
i� t0� = t1�

i� t0� t1
i� �` t0� t1 :

�

To extend the lemma to complex S-formulas, � has to satisfy some recursive properties.

De�nition 53. A set �� LS of S-formulas is a Henkin set if it satis�es the following
properties:

a) � is consistent;
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b) � is (derivation) complete, i.e., for all '2LS

�` ' or �`:';

c) � contains witnesses, i.e., for all 8x'2LS there is a term t2TS such that

�`:8x'!:' t
x
:

Lemma 54. Let ��LS be a Henkin set. Then for all �;  2LS and variables x:

a) �0 � i� �`:� .

b) �` � implies �`  , i� �` �!  .

c) For all t2TS holds �` � t

u
i� �`8x� .

Proof. a) Assume �0� . By derivation completeness, �`:� . Conversely assume �`:� .
Assume for a contradiction that �`� . Then � is inconsistent. Contradiction. Thus �0� .
b) Assume �` � implies �`  .
Case 1 . �` � . Then �`  and by an easy derivation �` �!  .
Case 2 . � 0 � . By the derivation completeness of � holds � ` :� . And by an easy
derivation �` �!  .

Conversely assume that � ` �!  . Assume that � ` � . By !-elimination, � `  .
Thus �` � implies �`  .
c) Assume that for all t 2 TS holds � ` � t

u
. Assume that � 0 8x� . By a), � ` :8x� .

Since � contains witnesses there is a term t 2 T S such that � ` :8x�!:� t

u
. By !-

elimination, � `:� t

u
. Contradiction. Thus � ` 8x� . The converse follows from the rule

of 8-elimination. �

Theorem 55. Let ��LS be a Henkin set. Then

a) For all formulas �2LS, pairwise distinct variables x~ and terms t~2T S

T�� � t~

x~
i� �` � t~

x~
:

b) T���.

Proof. b) follows immediately from a). a) is proved by induction on the number of logical
symbols ?;:;!; 8 occuring in the formula � . The atomic case, where that number is 0,
has already been proven. Consider the non-atomic cases:

i) �=? . Then ? t~

x~
=? . T� �? is false by de�nition of �, and � `? is false since � is

consistent. Thus T��? t~

x~
i� �`? t~

x~
.

ii.) �=:' t~

x~
and assume that the claim holds for '. Then

T��:' t~

x~
i� not T�� ' t~

x~

i� not �` ' t~

x~
by the inductive assumption

i� �`:' t~

x~
by a) of the previous lemma.
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iii.) �=('!  ) t
~

x~
and assume that the claim holds for ' and  . Then

T�� ('!  ) t
~

x~
i� T�� ' t~

x~
implies T��  t~

x~

i� �` ' t~

x~
implies �`  t~

x~
by the inductive assumption

i� �`
�
'
t~

x~
!  

t~

x~

�
by a) of the previous lemma

i� �` ('!  ) t
~

x~
by the de�nition of substitution:

iv.) � = (8x') t0::::tr¡1
x0:::xr¡1

and assume that the claim holds for '. By de�nition of the

substitution � is of the form

8x (' t0::::tr¡1
x0:::xr¡1

) or 8u (' t0::::tr¡1u
x0:::xr¡1x

)

with a suitable variable u. Without loss of generality assume that � is of the second form.
Then

T�� (8x') t
~

x~
i� T��9u (' t0::::tr¡1u

x0:::xr¡1x
)

i� for all t2TS holds T�
t�
u
� ' t0::::tr¡1u

x0:::xr¡1x

i� for all t2TS holds T�
I�(t)
u

� ' t0::::tr¡1u
x0:::xr¡1x

by a previous lemma

i� for all t2TS holds T�� (' t0::::tr¡1u
x0:::xr¡1x

) t
u

by the substitution lemma

i� for all t2TS holds T�� ' t0::::tr¡1 t
x0:::xr¡1x

by successive substitutions

i� for all t2TS holds �` ' t0::::tr¡1 t
x0:::xr¡1x

by the inductive assumption

i� for all t2TS holds �` (' t0::::tr¡1u
x0:::xr¡1x

) t
u

by successive substitutions

i� �`8u (' t0::::tr¡1u
x0:::xr¡1x

) by c) of the previous lemma

i� �` (8x') t
~

x~
:

�

11 �Constructing� Henkin sets
We shall show that every consistent set of formulas can be extended to a henkin set by
�rst �adding witnesses� and then ensuring derivation completeness.

Theorem 56. Let ��LS be consistent. Let '2LS and let z be a variable which does not
occur in �[f'g. Then the set

�[f:8x'!:'z
x
g

is consistent.

Proof. Assume not. Take '0; :::; 'n¡12� such that

'0 :::'n¡1 :8x'!:'z
x
` ? :
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Set ¡= '0 :::'n¡1. Then extend the derivation as follows:

1: ¡ :8x'!:' z

x
?

2: ¡ ::8x' ::8x'
3: ¡ ::8x' :8x'!:' z

x

4: ¡ ::8x' ?
5: ¡ :8x'
6: ¡ :' z

x
:' z

x

7: ¡ :' z

x
:8x'!:' z

x

8: ¡ :' z

x
?

9: ¡ '
z

x

10: ¡ 8x'
11: ¡ ?

Hence � is inconsistent, contradiction. �

This means that �new� variables may be used as henkin witnesses. Since �new� constant
symbols behave much like new variables, we get:

Theorem 57. Let � � LS be consistent. Let ' 2 LS and let c 2 S be a constant symbol
which does not occur in �[f'g. Then the set

�[f:8x'!:' c
x
g

is consistent.

Proof. Assume that �[f(:9x'_ ' c

x
)g is inconsistent. Take a derivation

¡0'0
¡1'1
��� (1)

¡n¡1 'n¡1
¡n (:8x'!:' c

x
) ?

with ¡n�� . Choose a variable z, which does not occur in the derivation. For a formula
 de�ne  0 by replacing each occurence of c by z, and for a sequence ¡ =  0::: k¡1 of
formulas let ¡0=  0

0 ::: k¡1
0 . Replacing each occurence of c by z in (1) we get

¡00'00

¡10'10

��� (2)
¡n¡10 'n¡1

0

¡n (:8x'!:'z
x
) ?

The particular form of the �nal sequence is due to the fact that c does not occur in �[f'g.
To show that (2) is again a derivation in the sequent calculus we show that the replacement
c 7! z transforms every instance of a sequent rule in (1) into an instance of a (derivable)
rule in (2). This is obvious for all rules except possibly the quantifyer rules.

So let

¡  
y
x

¡ 8x 
, with y 2/ free(¡[f8x g)
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be an 8-introduction in (1). Then ( y

x
)0= 0

y

x
, (8x )0=8x 0, and y2/ free(¡0[f(8x )0g).

Hence
¡0 ( y

x
)0

¡0 (8x )0
is a justi�ed 8-introduction.

Now consider an 8-elimination in (1):

¡ 8x 

¡  
t
x

Then (8x )0=8x 0 and ( t

x
)0= 0 t

0

x
where t 0 is obtained from t by replacing all occurences

of c by z. Hence
¡0 (8x )0

¡0 ( t
x
)0

is a justi�ed 8-elimination.
The derivation (2) proves that

�[
n�
:8x'!:'z

x

�o
`? ;

which contradicts the preceding lemma. �

We shall now show that any consistent set of formulas can be consistently expanded to
a set of formulas which contains witnesses.

Theorem 58. Let S be a language and let ��LS be consistent. Then there is a language
S! and �!�LS! such that

a) S! extends S by constant symbols, i.e., S�S! and if s2S! nS then s is a constant
symbol;

b) �!��;
c) �! is consistent;

d) �! contains witnesses;

e) if LS is countable then so are LS
!
and �!.

Proof. For every a de�ne a �new� distinct constant symbol ca, which does not occur in S.
Extend S by constant symbols c for  2LS :

S+=S [fc j 2LSg:
Then set

�+=�[f:8x'!:'c8x'
x
j8x'2LSg:

�+ contains witnesses for all universal formulas of S.
(1) �+�LS+ is consistent.
Proof : Assume instead that �+ is inconsistent. Choose a finite sequence 8x0'0; :::;
8xn¡1'n¡12LS of pairwise distinct universal formulas such that

�[f:8x0'0!:'0
c8x0'0
x0

; :::;:8xn¡1'n¡1!:'n¡1
c8xn¡1'n¡1
xn¡1

g

is inconsistent. By the previous theorem one can inductively show that for all i<n the set

�[f:8x0'0!:'0
c8x0'0
x0

; :::;:8xi¡1'i¡1!:'i¡1
c8xi¡1'i¡1
xi¡1

g
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is consistent. Contradiction. qed(1)
We iterate the +-operation through the integers. De�ne recursively

�0 = �
S0 = S

Sn+1 = (Sn)+

�n+1 = (�n)+

S! =
[
n2N

Sn

�! =
[
n2N

�n :

S! is an extension of S by constant symbols. For n2N, �n is consistent by induction. �!

is consistent by the lemma on unions of consistent sets.
(2) �! contains witnesses.
Proof . Let 8x'2LS!. Let n2N such that 8x'2LSn. Then :8x'!:'c8x'

x
2�n+1��!.

qed(2)
(3) Let LS be countable. Then LS

!
and �! are countable.

Proof . Since LS is countable, there can only be countably many symbols in the alphabet
of S0= S. The alphabet of S1 is obtained by adding the countable set fc j 2 LSg; the
alphabet of S1 is countable as the union of two countable sets. The set of words over a
countable alphabet is countable, hence LS

1
and �1�LS1 are countable.

Inductive application of this argument show that for any n 2N, the sets LS
n
and �n

are countable. Since countable unions of countable sets are countable, LS
!
=
S
n2NL

Sn

and also �!�LS! are countable. �

Exercise 11. Let S be a countable language, let ��LS be consistent, and let VarnVar(�) be in�nite.
Then there exists �! �LS such that

a) �! ��;
b) �! is consistent;

c) �! contains witnesses.

To get Henkin sets we have to ensure derivation completeness.

Theorem 59. Let S be a language and let ��LS be consistent. Then there is a consistent
���LS, ���� which is derivation complete.

Proof. De�ne the partial order (P ;�) by

P = f	�LS j	�� and 	 is consistentg:

P =/ ; since �2P . P is inductively ordered by a previous lemma: if F �P is linearly ordered
by inclusion, i.e., for all 	;	02F holds 	�	0 or 	0�	 then[

	2F
	2P :

Hence (P ;�) satis�es the conditions of Zorn's lemma. Let �� be a maximal element of (P ;
�). By the de�nition of P , ���LS, ���� , and �� is consistent. Derivation completeness
follows from the following claim.
(1) For all '2LS holds '2�� or :'2��.
Proof . �� is consistent. By a previous lemma, ��[f'g or ��[f:'g are consistent.
Case 1 . ��[f'g is consistent. By the �-maximality of ��, ��[f'g=�� and '2��.
Case 2 . �� [ f:'g is consistent. By the �-maximality of ��, �� [ f:'g = �� and
:'2��. �
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The proof uses Zorn's lemma. In case LS is countable one can work without Zorn's
lemma.

Proof. (For countable LS) Let LS = f'njn 2 Ng be an enumeration of LS. De�ne a
sequence (�njn2N) by recursion on n such that

i. ���n��n+1�LS;
ii. �n is consistent.

For n=0 set �0=�. Assume that �n is de�ned according to i. and ii.
Case 1 . �n[f'ng is consistent. Then set �n+1=�n[f'ng.
Case 2 . �n [ f'ng is inconsistent. Then �n [ f:'ng is consistent by a previous lemma,
and we de�ne �n+1=�n[f:'ng.

Let

��=
[
n2N

�n :

Then �� is a consistent superset of �. By construction, '2�� or :'2��, for all '2LS.
Hence �� is derivation complete. �

According to Theorem 58 a given consistent set � can be extended to �! � LS
!

containing witnesses. By Theorem 59 �! can be extended to a derivation complete ���
LS

!
. Since the latter step does not extend the language, �� contains witnesses and is thus

a henkin set:

Theorem 60. Let S be a language and let ��LS be consistent. Then there is a language
S� and ���LS� such that

a) S��S is an extension of S by constant symbols;

b) ���� is a Henkin set;

c) if LS is countable then so are LS
�
and ��.

12 The completeness theorem

The development of mathematics towards greater
precision has led, as is well known, to the formal-
ization of large tracts of it, so that one can prove
any theorem using nothing but a few mechanical
rules. Kurt Gödel, 1941

We can now combine our technical preparations to show the fundamental theorems
of �rst-order logic. Combining Theorems 60 and 55, we obtain a general and a countable
model existence theorem:

Theorem 61. (Henkin model existence theorem) Let �� LS. Then � is consistent i�
� is satis�able.

By Lemma 49, Theorem 61 the model existence theorems imply the main theorem.

Theorem 62. (Gödel completeness theorem) The sequent calculus is complete, i.e.,
�=`.
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The Gödel completeness theorem is the fundamental theorem of mathematical logic. It
connects syntax and semantics of formal languages in an optimal way. Before we continue
the mathematical study of its consequences we make some general remarks about the wider
impact of the theorem:

¡ The completeness theorem gives an ultimate correctness criterion for mathematical
proofs. A proof is correct if it can (in principle) be reformulated as a formal deriv-
ation. Although mathematicians prefer semi-formal or informal arguments, this
criterion could be applied in case of doubt.

¡ Checking the correctness of a formal proof in the above sequent calculus is a syntactic
task that can be carried out by computer. We shall later consider a prototyp-
ical proof checker Naproche which uses a formal language which is a subset of
natural english.

¡ By systematically running through all possible formal proofs, automatic theorem
proving is in principle possible. In this generality, however, algorithms immediately
run into very high algorithmic complexities and become practically infeasable.

¡ Practical automatic theorem proving has become possible in restricted situations,
either by looking at particular kinds of axioms and associated intended domains, or
by restricting the syntactical complexity of axioms and theorems.

¡ Automatic theorem proving is an important component of arti�cial intelligence
(AI) where a system has to obtain logical consequences from conditions formulated
in �rst-order logic. Although there are many di�culties with arti�cial intelligence
this approach is still being followed with some success.

¡ Another special case of automatic theorem proving is given by logic programming
where programs consist of logical statements of some restricted complexity and a
run of a program is a systematic search for a solution of the given statements. The
original and most prominent logic programming language is Prolog which is still
widely used in linguistics and AI.

¡ There are other areas which can be described formally and where syntax/semantics
constellations similar to �rst-order logic may occur. In the theory of algorithms
there is the syntax of programming languages versus the (mathematical) meaning
of a program. Since programs crucially involve time alternative logics with time
have to be introduced. Now in all such generalizations, the Gödel completeness
theorem serves as a pattern onto which to model the syntax/semantics relation.

¡ The success of the formal method in mathematics makes mathematics a leading
formal science. Several other sciences also strive to present and justify results form-
ally, like computer science and parts of philosophy.

¡ The completeness theorem must not be confused with the famous Gödel incom-
pleteness theorems: they say that certain axiom systems like Peano arithmetic are
incomplete in the sense that they do not imply some formulas which hold in the
standard model of the axiom system.

13 The compactness theorem
By the de�nition of `, �`' i� there is a �nite subset �0�� such that �0`' .The equality
of � and ` implies:
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Theorem 63. (Compactness theorem) Let ��LS and '2� . Then

a) �� ' i� there is a �nite subset �0�� such that �0� ' .

b) � is satis�able i� every �nite subset �0�� is satis�able.

This theorem is often to construct (unusual) models of �rst-order theories. It is the
basis of a �eld of logic called Model Theory.

We present a number theoretic application of the compactness theorem. The language
of arithmetic can be naturally interpreted in the structure N=(N;+; �;0;1). This structure
obviously satis�es the following axioms:

De�nition 64. The axiom system PA � LSAR of peano arithmetic consists of the fol-
lowing sentences

¡ 8xx+1=/ 0

¡ 8x8y x+1= y+1!x= y

¡ 8xx+0=x

¡ 8x8y x+(y+1)= (x+ y)+ 1

¡ 8xx � 0= 0

¡ 8x8y x � (y+1)=x � y+x
¡ Schema of induction: for every formula '(x0; :::; xn¡1; xn)2LSAR:

8x0:::8xn¡1('(x0; :::; xn¡1; 0)^8xn('! '(x0; :::; xn¡1; xn+1))!8xn')

The theory PA allows to prove a lot of number theoretic properties, e.g., about divis-
ibility and prime numbers. On the other hand the �rst incompleteness theorem of Gödel
shows that there are arithmetic sentences ' which are not decided by PA although they
are true in the standard model N of PA. Therefore PA is not complete.

If ' and :' are both not derivable from PA then PA+:' and PA+ ' are consistent.
By the model existence theorem, there are models M¡ and M+ such that M¡�PA+:'
and M+ � PA+ '. M¡ and M+ are not isomorphic. So there exist models of PA which
are not isomorphic to the standard model N.

We can also use the compactness theorem to obtain nonstandard models of theories.
De�ne the SAR-terms n� for n2N recursively by

0� = 0;
n+1 = (n�+ 1):

Note that this de�nition is taking place in the �meta theory� which studies the �object
theory� PA: give me a standard natural number n and I return the term n� .

De�ne divisibility by the SAR-formula �= 9v2 v0 � v2� v1.

Theorem 65. There is a model M � PA which contains an element 1 2 M, 1 =/ 0M

such that M�nj1 for every n2Nn f0g, where M�nj1 is an intuitive abbreviation for
M
1
v1
� � n�

v0
or equivalently M� �[n�M;1].

So �from the outside�, 1 is divisible by every positive natural number. This implies
M=�/ N , and so M is a nonstandard model of PA.

Proof. Consider the theory

�=PA[f�(n�; v0) jn2N n f0gg[f:v0� 0�g
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(1) � is satis�able.
Proof . We use the compactness theorem 63(b). Let �0 � � be �nite. It su�ces to show
that �0 is satis�able. Take a �nite number n02N such that

�0�PA[f�(n�; v0) jn2N; 16n6n0g:
Let N =n! . Then

N�PA and N� �(n�; N) for 16n6n0 :
So N

N

v0
��0 . qed(1)

By (1), let M0��. Let 1=M0(v0)2 jM0j. Let M be underlying SAR-structure of the
model M0. Then M is as required. �

This indicates that the model class of PA is rather complicated and rich. Indeed there
is a sub�eld of model theory which studies models of Peano arithmetic.

We de�ne notions which allow to examine the axiomatizability of classes of structures.

De�nition 66. Let S be a language and K be a class of S-structures.

a) K ist elementary or �nitely axiomatizable if there is an S-sentence ' with K =
ModS'.

b) K is �-elementary or axiomatizable, if there is a set � of S-sentences with K =
ModS�.

We state simple properties of the Mod-operator:

Theorem 67. Let S be a language.Then

a) For ��	�L0
S holds ModS��ModS	.

b) For �;	�L0
S holds ModS(�[	)=ModS�\ModS	.

c) For ��L0
S holds ModS�=

T
'2�ModS' .

d) For '0; :::; 'n¡12L0S holds ModSf'0; :::; 'n¡1g=ModS('0^ :::^ 'n¡1).

e) For '2L0S holds ModS(:')=ModS(;) nModS(').

c) explains the denotation ��-elementary�, since ModS� is the intersection (�Durch-
schnitt�) of all single ModS' .

Theorem 68. Let S be a language and K;L be classes of S-structures with

L=ModS;nK :

Then if K and L are axiomatizable, they are �nitely axiomatizable.

Proof. Take axiom systems �K and �L such that K=ModS�K and L=ModS�L. Assume
that K is not �nitely axiomatizable.
(1) Let �0��K be �nite. Then �0[�L is satis�able.
Proof : ModS�0 �ModS�K . Since K is not �nitely axiomatizable, ModS�0 =/ ModS�K .
Then ModS�0\L=/ ;. Take a model A2L, A2ModS�0 . Then A��0[�L . qed(1)
(2) �K [�L is satis�able.
Proof : By the compactness theorem 63 it su�ces to show that every �nite 	� �K [ �L
is satis�able. By (1), (	\�K)[�L is satis�able. Thus 	� (	\�K)[�L is satis�able.
qed(2)
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By (2), ModS�K \ModS�L=/ ;. But the classes K and L are complements, contradic-
tion. Thus K is �nitely axiomatizable. �

II Herbrand's Theorem and Automatic
Theorem Proving

When a man Reasoneth, hee does nothing else but conceive a summe
totall, from Addition of parcels. For as Arithmeticians teach to adde

and substract in numbers; so the Geometricians teach the same in lines,
�gures (solid and super�ciall,) angles, proportions, times, degrees of
swiftnesse, force, power, and the like; The Logicians teach the same
in Consequences of words; adding together two Names, to make an

A�rmation; and two A�rmations, to make a Syllogisme; and many
Syllogismes to make a Demonstration; and from the summe, or Conclu-
sion of a Syllogisme, they substract one Proposition, to �nde the other.
For REASON, in this sense, is nothing but Reckoning (that is, Adding

and Substracting) of the Consequences of generall names agreed upon,
for the marking and signifying of our thoughts.
Thomas Hobbes (1588�1679), Leviathan, or The Matter, Forme, &
Power of a Common-Wealth Ecclesiasticall and Civill

This quote introduces the standard reference for implementing logic on computers:
the Handbook of Practical Logic and Automated Reasoning by John Harrison. Syntactical
�calculations� can be carried out by hand and by computers. We shall �rst consider some
transformations to normal forms.

14 Normal forms

Normal forms are important in all �elds of mathematics. Linear algebra, e.g., knows several
normal forms for matrices which are equivalent to given matrices with respect to certain
transformations, and polynomials are normal forms of terms in the theory of commutative
rings.

Here we shall study normal forms of formulas, where equivalence is logical equivalence.
Our motivation is the importance for automated theorem proving . We work in some �xed
language S.

De�nition 69.

a) An S-formula is a literal if it is atomic or the negation of an atomic formula.

b) De�ne the dual of the literal L as

L� =
�
:L, if L is an atomic formula;
K, if L is of the form :K:
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14.1 Negation normal form
Most proving algorithms are based on the cancellation of positive and negative literals. It
is important to shift negations down to the atoms:

De�nition 70. '2LS is in negation normal form (NNF) if ' does not contain the symbols
! and $ and if every subformula of ' of the form : is a literal.

Note the we eliminate the junctors ! and $ as they contain implicit negations.

Lemma 71. Every '2LS is logically equivalent to a formula in NNF.

Proof. An obvious proof can be conducted by induction on the structure of ' . Standard
equivalences of formulas like

('$  ) $ ('!  )^ ( ! ')
('!  ) $ (:'_  )
:8x' $ 9x:'

:('^  ) $ (:')_ (: )

serve to eliminate ! and $ and to push negation symbols to the inside of a formula. �

14.2 Conjunctive and disjunctive normal form
^; _ (and :) satisfy associative, commutative and distributive laws (up to logical equi-
valence). Therefore quanti�er-free formulas can be transformed in certain kinds of �polyno-
mials�:

De�nition 72.

a) A formula ' is in disjunctive normal form (DNF) if it is of the form

'=
_
i<m

(
^
j<ni

Lij)

where each Lij is a literal.

b) A formula ' is in conjunctive normal form (CNF) if it is of the form

'=
^
i<m

(
_
j<ni

Lij)

where each Lij is a literal.

Theorem 73. Let ' be a formula without quanti�ers. Then ' is equivalent to some '0 in
disjunctive normal form and to some '00 in conjunctive normal form.

Proof. By induction on the complexity of '. Clear for ' atomic. The : step follows from
the de Morgan laws:

:
_
i<m

(
^
j<ni

Lij) $
^
i<m

:(
^
j<ni

Lij)

$
^
i<m

(
_
j<ni

:Lij):

The ^-step is clear for conjunctive normal forms. For disjunctive normal forms the asso-
ciativity rules yield_

i<m

(
^
j<ni

Lij)^
_
i<m0

(
^
j<ni

0

Lij
0 ) $

_
i<m;i0<m0

(
^
j<ni

Lij ^
^
j<ni

0

Lij
0 )
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which is also in conjunctive normal form. �

Often the conjunctive normal form

'=
^
i<m

(
_
j<ni

Lij)

is also written in set notion as

'= ffL00; :::; L0n0¡1g; :::; fLm¡1;0; :::; Lm¡1;nm¡1gg;

using that sets are independent of the order of elements and eliminate multiple entries
just like �nite conjunctions and disjunctions. Furthermore we can distinguish positive and
negative literals Lij and partition the corresponding atomic formulas into a positive set pi
and a negative set ni . So we can represent ' as a set of pairs of sets of atomic formulas:

'= f(p0; n0); :::; (pm¡1; nm¡1)g:

Details of such presentations are of course dependent on the intended use.

14.3 Prenex normal form

De�nition 74. A formula ' is in prenex normal form if it is of the form

'=Q0x0Q1x1:::Qm¡1xm¡1  

where each Qi is either the quanti�er 8 or 9 and  is quanti�er-free. Then the quanti�er
string Q0 x0 Q1 x1:::Qm¡1 xm¡1 is called the pre�x of ' and the formula  is the matrix
of '.

Theorem 75. Let ' be a formula. Then ' is equivalent to a formula '0 in prenex normal
form.

Proof. By induction on the complexity of '. Clear for atomic formulas. If

'$Q0x0Q1x1:::Qm¡1xm¡1  

with quanti�er-free  then by the de Morgan laws for quanti�ers

:'$Q�
0
x0Q�1x1::: Q�m¡1xm¡1: 

where the dual quanti�er Q� is de�ned by 9�=8 and 8�=9 .
For the ^-operation consider another formula

'0$Q0
0 x0
0 Q1

0 x1
0 :::Qm0¡1

0 xm0¡1
0  0

with quanti�er-free  0. We may assume that the bound variables of ' are disjoint from all
variables occuring in '0 and that the bound variables of '0 are disjoint from all variables
occuring in '. Then a semantic argument shows that

'^ '0$Q0x0Q1x1:::Qm¡1xm¡1Q0
0 x0
0 Q1

0 x1
0 :::Qm0¡1

0 xm0¡1
0 ( ^  0): �

The quanti�er structure of prenex formulas is a measure of the complexity of formulas.
In particular:

De�nition 76. A formula ' is universal if it is of the form

'= 8x08x1:::8xm¡1  
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where  is quanti�er-free. A formula ' is existential if it is of the form

'= 9x09x1:::9xm¡1  
where  is quanti�er-free.

14.4 Skolem normal form

Theorem 77. Let ' be an S-formula. Then there is a canonical extension S� of the
language S and a canonical universal '�2LS� such that

' is consistent i� '� is consistent.

The formula '� is called the Skolem normal form of '.

Proof. By a previous theorem we may assume that ' is in prenex normal form. We prove
the theorem by induction on the number of existential quanti�ers in '. If ' does not
contain an existential quanti�er we are done. Otherwise let

'=8x1:::8xm9y 

where m < ! may also be 0. Introduce a new m-ary function symbol f (or a constant
symbol in case m=0) and let

'0=8x1:::8xm 
fx1:::xm

y
:

By induction it su�ces to show that ' is consistent i� '0 is consistent.
(1) '0! '.
Proof . Assume '0. Consider x1; :::; xm . Then  fx1:::xm

y
. Then 9y . Thus 8x1:::8xm9y .

qed(1)
(2) If '0 is consistent then ' is consistent.
Proof . If '!? then by (1) '0!? . qed(2)
(3) If ' is consistent then '0 is consistent.
Proof . Let ' be consistent and let M=(M; :::)� ' . Then

8a12M :::8am2M 9b2MM
a~ b
x~ y
� :

Using the axiom of choice there is a function h:Mm!M such that

8a12M :::8am2MM
a~ h(a1; :::; am)

x~ y
� :

Expand the model M to M0 by setting fM
0
=h . Then h(a1; :::; am)=M0a~

x~
(fx1:::xm) and

8a12M:::8am2MM0a~ M0a~
x~
(fx1:::xm)
x~ y

=M0a~

x~

M0a~
x~
(fx1:::xm)
y

�  :

By the substitution theorem this is equivalent to

8a12M :::8am2M M0a~
x~
�  fx1:::xm

y
:

Hence

M0�8x1:::8xm 
fx1:::xm

y
='0:

Thus '0 is consistent. �
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Exercise 12. Prove the preceding Theorem syntactically, without using models.

15 Herbrand's theorem
By the previous chapter we can reduce the question whether a given �nite set of formulas
is inconsistent to the question whether some universal formula is inconsistent. By the
following theorem this can be answered rather schematically.

Theorem 78. Let S be a language which contains at least one constant symbol. Let

'= 8x08x1:::8xm¡1  

be a universal S-sentence with quanti�er-free matrix  . Then ' is inconsistent i� there
are variable-free S-terms (�constant terms�)

t0
0; :::; tm¡1

0 ; :::; t0
N¡1; :::; tm¡1

N¡1

such that

'0=
^
i<N

 
t0
i :::tm¡1

i

x0:::xm¡1
= 

t0
0:::tm¡1

0

x0:::xm¡1
^ :::^  t0

N¡1:::tm¡1
N¡1

x0:::xm¡1
is inconsistent.

Proof. All sentences '0, for various choices of constant terms, are logical consequences of
'. So ' is consistent, all '0 are consistent.

Conversely assume that all '0 are consistent. Then by the compactness theorem

�= f t0:::tm¡1
x0:::xm¡1

jt0; :::; tm¡1 are constant S-termsg

is consistent. Let M=(M; :::)��. Let

H = ftMjt is a constant S-termg:

Then H =/ ; since S contains a constant symbol. By de�nition, H is closed under the
functions of M . So we let H=(H; :::)�M be the substructure of M with domain H.
(1) H� ' .
Proof . Let t0M; :::; tm¡1M 2H where t0; :::; tm¡1 are constant S-terms. Then  t0:::tm¡1

x0:::xm¡1
2�,

M�  t0:::tm¡1
x0:::xm¡1

, and by the substitution theorem

M
t0
M:::tm¡1

M

x0:::xm¡1
�  :

Since  is quanti�er-free this transfers to H :

H
t0
M:::tm¡1

M

x0:::xm¡1
�  :

Thus

H�8x0 8x1:::8xm¡1  = ':

qed(1)
Thus ' is consistent. �

In case that the formula  does not contain the equality sign � checking for inconsist-
ency of

'0=
^
i<N

 
t0
i :::tm¡1

i

x0:::xm¡1
= 

t0
0:::tm¡1

0

x0:::xm¡1
^ :::^  t0

N¡1:::tm¡1
N¡1

x0:::xm¡1
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is in principle a straightforward �nitary problem. '0 is inconsistent i� :'0 universally
valid. We saw that universal validity can be checked via CNF when the atomic formulas
are of the form Trm . . . [] which can be interpreted as propositional variables. Since
we work without equality, atomic formulas with a list of constant terms behave just like
(independent) propositional variables. So we have explicit (Haskell) algorithms for the
required inconsistency checks contains �nitely many constant S-terms. This leads to the
following (theoretical) algorithm for automatic proving of formulas without � which we
call the Herbrand procedure:

Let 
�LS be �nite and �2LS. To check whether 
` �:
1. Form �=
[f:�g and let '=8(

V
�) be the universal closure of

V
� . Then 
`�

i� �=
[f:�g is inconsistent i� (
V
�)`? i� 8(

V
�)`? .

2. Transform ' into universal form '8= 8x0 8x1:::8xm¡1  (Skolemization).

3. (Systematically) search for constant S-terms

t0
0; :::; tm¡1

0 ; :::; t0
N¡1; :::; tm¡1

N¡1

such that

'0=
^
i<N

 
t0
i :::tm¡1

i

x0:::xm¡1
= 

t0
0:::tm¡1

0

x0:::xm¡1
^ :::^  t0

N¡1:::tm¡1
N¡1

x0:::xm¡1

is inconsistent.

4. If an inconsistent '0 is found, output �yes�, otherwise carry on.

Obviously, if �yes� is output then 
` � . This is the correctness of the algorithm. On the
other hand, Herbrand's theorem ensures that if 
 ` � then an appropriate '0 will be
found, and �yes� will be output, i.e., the algorithm is complete.

Example 79. We demonstrate the procedure with a small example. Let

�=9x8y(D(x)!D(y))

be a version of the well-known drinker's paradox : there is somebody called x such that
everybody drinks provided x drinks. To prove � we follow the above steps.

1. � is valid i� :� is inconsistent. :� is equivalent to 8x9y(D(x)^:D(y)).
2. The Skolemization of that formula is 8x(D(x)^:D(fy(x))).
3. Ground terms without free variables can be formed from a new constant symbol c

and the unary function symbol fy : c; fy(c); fy(fy(c)); ::: . We form the corresponding
ground instances of the kernel D(x)^:D(fy(x)):

D(c)^:D(fy(c));D(fy(c))^:D(fy(fy(c)));D(fy(fy(c)))^:D(fy(fy(fy(c)))); :::

This leads to a sequence of conjunctions of ground instances:

¡ D(c) ^ :D(fy(c)) is consistent since the conjunction does not contain dual
literals;

¡ D(c) ^ :D(fy(c)) ^ D(fy(c)) ^ :D(fy(fy(c))) is inconsistent since the
conjunction contains the dual literals :D(fy(c)) and D(fy(c)).

This concludes the proof of the drinker's paradox via Herbrand's theorem.
The Herbrand procedure method can in principle be carried out automatically. It has

for example been implemented in the Gilmore procedure which can be found in Harrison's
Handbook , but the details are too involved to be discussed within this course.
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16 Computer implementation of symbolic logic

We implement some syntactical algorithms in the functional computer language Haskell.
Some of the code is a simpli�cation of code from the Naproche (Natural Proof Checking)
project at Bonn. Naproche is oriented towards a natural mathematical input language and
natural proof structurings.

A Haskell module begins with a command like

> module FOL where

Since the Naproche modelling of syntax will be based on lists of syntactic objects, we also
import a package with useful functions for lists from the standard library:

> import Data.List

We are using �literate Haskell� which treats everything as comment except lines which start
with the symbol �>�.

16.1 Formulas

In Naproche, formulas are de�ned by the data type

data Formula =
All Decl Formula | Exi Decl Formula |
Iff Formula Formula | Imp Formula Formula |
Or Formula Formula | And Formula Formula |
Tag Tag Formula | Not Formula |
Top | Bot |
Trm { trmName :: TermName, trmArgs :: [Formula],

trmInfo :: [Formula], trmId :: TermId} |
Var { varName :: VariableName, varInfo :: [Formula], varPosition ::

SourcePos } |
Ind { indIndex :: Int, indPosition :: SourcePos } | ThisT
deriving (Eq, Ord)

Formulas in this type contain information important for processing in the Naproche-SAD
system, like SourcePos for the original position of elements in some input �le. We simplify
the data type for our purposes:

> data Formula =
> All String Formula | Exi String Formula |
> Iff Formula Formula | Imp Formula Formula |
> Or Formula Formula | And Formula Formula |
> Not Formula | Bot |
> Trm String [Formula] | Var String
> deriving (Eq, Ord, Show)

The Formula data type also contains terms and relations:

¡ a variable � can be represented by Var "alpha" where sequences of letters between
" " are strings;
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¡ a term f(x; y; :::) can be represented by Trm "f" [Var "x", Var "y", . .. ]
where the arity of function symbols is not speci�ed; the list [ . . . ] has to provide
su�ciently many arguments;

¡ constant symbols can be represented by empty lists like in Trm "zero" [];

¡ the same formalism is used for relations: Trm "greater" [Var "x", Var "y"] can
stand for x> y;

¡ then terms with empty lists like Trm "True" [] can stand for propositional con-
stants.

In this formalism a �drinker's formula� can be de�ned as:

> drinker = Exi "x" (All "y" (Iff (Trm "drinks" [Var "x"]) (Trm "drinks"
[Var "y"])))

The commands so far can be put in a �le FOL.lhs (.lhs is the ending for literate Haskell)
and be tried out in some interactive Haskell environment like the interactive Glasgow
Haskell Compiler GHCi:

koepke@dell:~/V/2019/WS/Logik$ ghci FOL.lhs
GHCi, version 8.0.2: http://www.haskell.org/ghc/ :? for help
[1 of 1] Compiling FOL ( FOL.lhs, interpreted )
Ok, modules loaded: FOL.
*FOL> drinker
Exi "x" (All "y" (Iff (Trm "drinks" [Var "x"]) (Trm "drinks" [Var "y"])))
*FOL> :type drinker
drinker :: Formula

The command drinker prints the value of the term drinker and :type drinker prints
out the type of the term. Functions are the ��rst-class� objects of the functional language
Haskell. Even constructors of the Formula data type are viewed as (generating) functions:

*FOL> :type Not
Not :: Formula -> Formula
*FOL> :type And
And :: Formula -> Formula -> Formula

16.2 Negation normal form
Let us consider a �rst example of a syntactic operation in Haskell, the transformation into
NNF:

> nnf :: Formula -> Formula
> nnf (All string formula) = All string (nnf formula)
> nnf (Exi string formula) = Exi string (nnf formula)
> nnf (Iff formula1 formula2) = nnf (And (Or (Not formula1) formula2)

(Or formula1 (Not formula2)))
> nnf (Imp formula1 formula2) = nnf (Or (Not formula1) formula2)
> nnf (Or formula1 formula2) = Or (nnf formula1) (nnf formula2)
> nnf (And formula1 formula2) = And (nnf formula1) (nnf formula2)
> nnf (Not (All string formula)) = nnf (Exi string (Not formula))
> nnf (Not (Exi string formula)) = nnf (All string (Not formula))
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> nnf (Not (Iff f g)) = nnf (And (Or f g) (Or (Not f) (Not
g)))
> nnf (Not (Imp f g)) = nnf (And f (Not g))
> nnf (Not (And f g)) = nnf (Or (Not f) (Not g))
> nnf (Not (Or f g)) = nnf (And (Not f) (Not g))
> nnf (Not (Not f)) = nnf f
> nnf f = f

Example 80.

*FOL> nnf drinker
Exi "x" (All "y" (And (Or (Not (Trm "drinks" [Var "x"])) (Trm "drinks"
[Var "y"])) (Or (Trm "drinks" [Var "x"]) (Not (Trm "drinks" [Var
"y"])))))

16.3 CNF
In Haskell, we can emulate the set representation of CNF using lists instead of sets. The
disjunctions in CNFs are called clauses. We divide the literals in a clause up into pair
consisting of the set of positive literals and of the set of negative literals:

> type Clause a = ([a],[a])

where the type variable a will be instantiated by atomic formulas. A formula in CNF would
then be a list of clauses:

> type CNF a = [Clause a].

NNF quanti�er-free formulas can be transformed into CNF by:

> cnf (And f g) = (cnf f) ++ (cnf g)
> cnf (Or f1 f2) = [(p1 ++ p2,n1 ++ n2)| (p1,n1) <- cnf(f1),(p2,n2) <-cnf(f2)]
> cnf (Not f) = [([],[f])]
> cnf f = [([f],[])]

The �rst line uses the associativity of ^; the second uses distributivity; the third inserts
negated formulas in the negative component of clauses, whereas otherwise the entry goes
into the positive component. List concatenation ++ corresponds to the union of two sets;
list abstraction [..|..] works like set abstraction; (p1,n1) <- cnf(f1) means that one
ranges over all members of cnf(f1) which are of the form (p1,n1).

We use these functions to compute a conjunctive normal form of a formula like A ^
B!B ^A:

*FOL> cnf . nnf $ (Imp (And (Trm "A" []) (Trm "B" [])) (And (Trm "B" [])
(Trm "A" [])))
[([Trm "B" []],[Trm "A" [],Trm "B" []]),([Trm "A" []],[Trm "A" [],Trm "B"
[]])]

Such a CNF is universally valid i� every conjunct (or element) is universally valid. An
element is a disjunction of literals. Such a disjunction is universally valid i� it contains
the negation of Bot or some literal together with its dual. This is checked by the following
recursive function:

> validCNF [] = True
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> validCNF ((pos,neg) : tail) = validCNF tail && ((Bot `elem` neg)
|| not (intersect pos neg == []))

We can now check propositional tautologies by composing the operations of negation nor-
malization, conjunctive normalization and validity checking by the Haskell composition
operator �.�.

> propTaut = validCNF . cnf . nnf

The formula (p$ (q$ r))$ ((p$ q)$ r) is a tautology since:

*FOL> propTaut $ ((Trm "p" []) `Iff` ((Trm "q" []) `Iff` (Trm "r" [])))
`Iff` (((Trm "p" []) `Iff` ((Trm "q" [])) `Iff` (Trm "r" [])))
True

Note that the corresponding CNF is quite large, since an elimination of, increases formula
size considerably.

*FOL> cnf . nnf $ ((Trm "p" []) `Iff` ((Trm "q" []) `Iff` (Trm "r" [])))
`Iff` (((Trm "p" []) `Iff` ((Trm "q" [])) `Iff` (Trm "r" [])))
[([Trm "p" [],Trm "r" [],Trm "p" [],Trm "q" [],Trm "r" []],[Trm "q" []]),
([Trm "p" [],Trm "r" [],Trm "r" []],[Trm "q" [],Trm "p" [],Trm "q" []]),
([Trm "p" [],Trm "r" [],Trm "q" []],[Trm "q" [],Trm "p" [],Trm "r" []]),
([Trm "p" [],Trm "r" [],Trm "p" []],[Trm "q" [],Trm "q" [],Trm "r" []]),
([Trm "p" [],Trm "q" [],Trm "p" [],Trm "q" [],Trm "r" []],[Trm "r" []]),
([Trm "p" [],Trm "q" [],Trm "r" []],[Trm "r" [],Trm "p" [],Trm "q" []]),
([Trm "p" [],Trm "q" [],Trm "q" []],[Trm "r" [],Trm "p" [],Trm "r" []]),
([Trm "p" [],Trm "q" [],Trm "p" []],[Trm "r" [],Trm "q" [],Trm "r" []]),
([Trm "q" [],Trm "r" [],Trm "p" [],Trm "q" [],Trm "r" []],[Trm "p" []]),
([Trm "q" [],Trm "r" [],Trm "r" []],[Trm "p" [],Trm "p" [],Trm "q" []]),
([Trm "q" [],Trm "r" [],Trm "q" []],[Trm "p" [],Trm "p" [],Trm "r" []]),
([Trm "q" [],Trm "r" [],Trm "p" []],[Trm "p" [],Trm "q" [],Trm "r" []]),
([Trm "p" [],Trm "q" [],Trm "r" []],[Trm "p" [],Trm "q" [],Trm "r" []]),
([Trm "r" []],[Trm "p" [],Trm "q" [],Trm "r" [],Trm "p" [],Trm "q" []]),
([Trm "q" []],[Trm "p" [],Trm "q" [],Trm "r" [],Trm "p" [],Trm "r" []]),
([Trm "p" []],[Trm "p" [],Trm "q" [],Trm "r" [],Trm "q" [],Trm "r" []]),
([Trm "r" [],Trm "q" [],Trm "r" []],[Trm "p" [],Trm "q" [],Trm "p" []]),
([Trm "r" [],Trm "p" [],Trm "r" []],[Trm "p" [],Trm "q" [],Trm "q" []]),
([Trm "r" [],Trm "p" [],Trm "q" []],[Trm "p" [],Trm "q" [],Trm "r" []]),
([Trm "r" []],[Trm "p" [],Trm "q" [],Trm "p" [],Trm "q" [],Trm "r" []]),
([Trm "q" [],Trm "q" [],Trm "r" []],[Trm "p" [],Trm "r" [],Trm "p" []]),
([Trm "q" [],Trm "p" [],Trm "r" []],[Trm "p" [],Trm "r" [],Trm "q" []]),
([Trm "q" [],Trm "p" [],Trm "q" []],[Trm "p" [],Trm "r" [],Trm "r" []]),
([Trm "q" []],[Trm "p" [],Trm "r" [],Trm "p" [],Trm "q" [],Trm "r" []]),
([Trm "p" [],Trm "q" [],Trm "r" [],Trm "q" [],Trm "r" []],[Trm "p" []]),
([Trm "p" [],Trm "q" [],Trm "r" [],Trm "p" [],Trm "r" []],[Trm "q" []]),
([Trm "p" [],Trm "q" [],Trm "r" [],Trm "p" [],Trm "q" []],[Trm "r" []]),
([Trm "p" [],Trm "q" [],Trm "r" []],[Trm "p" [],Trm "q" [],Trm "r" []]),
([Trm "p" [],Trm "q" [],Trm "r" []],[Trm "q" [],Trm "r" [],Trm "p" []]),
([Trm "p" [],Trm "p" [],Trm "r" []],[Trm "q" [],Trm "r" [],Trm "q" []]),
([Trm "p" [],Trm "p" [],Trm "q" []],[Trm "q" [],Trm "r" [],Trm "r" []]),
([Trm "p" []],[Trm "q" [],Trm "r" [],Trm "p" [],Trm "q" [],Trm "r" []])]
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If one wants to code this algorithm e�ciently, better formula representations and internal
simpli�cations should be used. There are many dedicated algorithms for tautology checking
which are much more e�cient in practice.

Note the di�erence between this brute force CNF calculation and an insightful human
argument: one might, e.g., observe that the operation p$ q on truth values is isomorphic
to addition modulo 2 if one maps T to 0 and F to 1. And addition is associative.

Example 81. Electronic circuits.
Binary electronic circuits contain wires that at a given moment can have one out of two

electric voltages Vdd and Vss , corresponding to the truth values F and T. Electrical circuits
consist of transistors that perform simple logical operations on truth values. The overall
function of a circuit is given by a composition of such operations. Proving the correctness
of circuits amounts to showing that such a composition satis�es certain propositional
properties.

We want to show that the following circuit realizes a Nor gate, i.e., a negated Or.

The circuit employs four CMOS transistors. The two N-type transistors at the bottom
shortcut their output wires when the input is T. E.g.,
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(Trm "InputA" []) `Imp` ((Trm "Output" []) `Iff` Bot)

The top two P-type transistors shortcut when the input is F:

Not (Trm "InputA" []) `Imp` ((Trm "Internal" []) `Iff` Top)

The logical behaviour of the circuit is described by:

> circuit = (Not (Trm "InputA" []) `Imp` ((Trm "Internal" []) `Iff` Top))
> `And`
> (Not (Trm "InputB" []) `Imp`
> ((Trm "Output" []) `Iff` (Trm "Internal" []))) `And`
> ((Trm "InputA" []) `Imp` ((Trm "Output" []) `Iff` Bot)) `And`
> ((Trm "InputB" []) `Imp` ((Trm "Output" []) `Iff` Bot))

Proving that the circuit correctly implements the Nor function is expressed by

> circuit
> `Imp` ((Trm "Output" []) `Iff`
> Not ((Trm "InputA" []) `Or` (Trm "InputB" [])))

propTaut quickly checks that this is a tautology.

16.4 DNF
Disjunctive normal forms (DNF) are dual to CNF's. We can use the set or list presentation
also for DNF's, where we now understand

'= ffL00; :::; L0n0¡1g; :::; fLm¡1;0; :::; Lm¡1;nm¡1gg;

as an abbreviation for a disjunction of conjunctions:

'=
_
i<m

(
^
j<ni

Lij):

NNF quanti�er-free formulas can be transformed into DNF by the �dual� program to cnf:

> dnf (Or f g) = (dnf f) ++ (dnf g)
> dnf (And f1 f2) = [(p1 ++ p2,n1 ++ n2)| (p1,n1) <- dnf(f1),(p2,n2) <-dnf(f2)]
> dnf (Not f) = [([],[f])]
> dnf f = [([f],[])]

Such a DNF is universally valid i� some disjunct (or element) is satis�able. An element
is a conjunction of literals. Such a conjunction is satis�able i� Bot does not appear and
if every atomic formula occurs at most once, either in positive or negative form. This is
expressed by the following recursive function:

> satDNF [] = False
> satDNF ((pos,neg) : tail) = sadDNF tail || (not (Bot `elem` pos)

&& (intersect pos neg == []))

Deciding propositional satis�ability is the famous SAT problem from computer science.
SAT is NP-complete which means that it is probably of very high complexity although a
given solution can be checked quickly. We can decide small instances of SAT with:
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> propSAT = satDNF . dnf . nnf

Finding a decision algorithm for SAT whose running time is always less than a �xed
polynomial in the number of propositional variables amounts to showing that P=NP. The
general conjecture these days is, however, that P=/NP.

16.5 Latin squares as a SAT problem
An n by n grid �lled with numbers 0; :::; n¡ 1 so that every row and column contains all
the numbers 1; :::;n (exactly) once is a Latin square. Being a Latin square can be described
in propositional logic. In set theory one indenti�es the natural number n with the set
f0; :::; n¡1g of its predecessors. So the cartesian product n�n can be taken as (the index
set of) the grid.

Let the propositional variable Aijk express that the grid position (i; j) contains the
number k. (Aijk ) describes a Latin square i�:

¡ any grid position contains at least one number:^
(i;j)2n�n

_
k2n

Aij
k

¡ any grid position contains at most one number:^
(i;j)2n�n

^
k2n

^
l2k

:(Aijk ^Aijl )

¡ any row contains every number: ^
i2n

^
k2n

_
j2n

Aij
k

¡ any column contains every number:^
j2n

^
k2n

_
i2n

Aij
k

This amounts to a DNF with n3 variables and n2+n2 � n (n¡ 1)
2

+n2+n2 clauses.
In Latin square problems, a certain grid positions contain a given number, i.e., certain

Aij
k are assigned the truth value T. These givens are usually called �clues�. A solution

extends the assignment to all Aijk . This a propositional SAT problem.
Note that one could formulate equivalent speci�cations which look very di�erently.

Instead of requiring that every row contains every number, one could have equivalently
postulated that the numbers in a row are pairwise distinct.

For n = 9, Latin square problems can be solved in milliseconds by modern general
purpose SAT solvers (but not by our simple-minded propSAT). These solvers incorporate
sophisticated strategies and heuristics, as well as e�cient programming techniques.

Note that standard Sudoku problems are Latin square problems with the further
restraint

¡ that certain 3� 3 subsquares contain every number:^
(a;b)23�3

^
k29

_
(c;d)23�3

A3a+c;3b+d
k

Using current SAT solvers one can program a fast Sudoku solver by just specifying the
propositional problem, instead of programming �intelligent� human-like search strategies.
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17 Resolution
The Herbrand procedure is theoretically complete: a formula is provable i� the procedure
terminates. Termination can however take very long so that a proof will not be found in
practice. Also there is an enormous amount of data to be stored which may cause the
program to crash. E.g., disjunctive normal forms in the gilmore program which can simply
be checked for inconsistency seem to double in length with each iteration of the algorithm.
Practical automatic theorem proving requires more e�cient algorithms in order to narrow
down the search space for inconsistencies and to keep data sizes small.

We shall now present another method based on conjunctive normal forms. We assume
that the quanti�er-free formula  is a conjunction of clauses  = c0^ c1^ :::^ cl¡1. Then
8x0 8x1:::8xm¡1  is inconsistent i� the set

fci
t0:::tm¡1
x0:::xm¡1

jt0; :::; tm¡1 are constant S-termsg
is inconsistent.

The method of resolution gives an e�cient method for showing the inconsistency of sets
of clauses. Let us assume until further notice, that the formulas considered do not contain
the symbol �.

De�nition 82. Let c+=fK0; :::;Kk¡1g and c¡=fL0; :::; Ll¡1g be clauses with literals Ki

and Lj . Note that fK0; :::;Kk¡1g stands for the disjunction K0_ :::_Kk¡1 . Assume that
K0 and L0 are dual, i.e., L0=K0 . Then the disjunction

fK1; :::;Kk¡1g[fL1; :::; Ll¡1g

is a resolution of c+ and c¡.

Resolution is related to the application of modus ponens: '!  and ' correspond to
the clauses f:';  g and f'g. f g is a resolution of f:';  g and f'g.

Theorem 83. Let C be a set of clauses and let c be a resolution of two clauses c+; c¡2C.
Then if C [fcg is inconsistent then C is inconsistent.

Proof. Let c+= fK0; :::;Kk¡1g, c¡= f:K0; L1:::; Ll¡1g, and c= fK1; :::;Kk¡1g[fL1; :::;
Ll¡1g. Assume that M�C is a model of C.
Case 1 . M�K0 . Then M� c¡, M� fL1:::; Ll¡1g, and

M� fK1; :::; Kk¡1g[fL1; :::; Ll¡1g= c:

Case 2 . M�:K0 . Then M� c+, M� fK1:::; Kk¡1g, and

M� fK1; :::; Kk¡1g[fL1; :::; Ll¡1g= c:
Thus M�C [fcg. �

Theorem 84. Let C be a set of clauses closed under resolution. Then C is inconsistent
i� ;2C. Note that the empty clause fg is logically equivalent to ? .

Proof. If ;2C then C is clearly inconsistent.
Assume that the converse implication is false. Consider a set C of clauses such that

(�) C is inconsistent and closed under resolution, but ;2/ C :

By the compactness theorem there is a �nite set of atomic formulas f'0; :::; 'n¡1g such that

C 0= fc2C jfor every literal L in c there exists i <n such that L= 'i or L=:'ig;
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is also inconsistent. Since resolution only deletes atomic formulas, C 0 is also closed under
resolution, and of course ;2/C 0. So we may assume right away that there is only a �nite set
f'0; :::; 'n¡1g of atomic formulas occuring in C, and that n with that property is chosen
minimally.

From n= 0 atomic formulas one can only build the empty clause ;. Since C is incon-
sistent, we must have C =/ ; . Thus C = f;g and ;2C , which contradicts (�).

So we have n=m+1> 0. Let

C+= fc2C j:'m2/ cg; C¡= fc2C j'm2/ cg
and

C0
+= fc n f'mgjc2C+g; C0¡= fc n f:'mgjc2C¡g:

(1) C0
+ and C0

¡ are closed under resolution.
Proof . Let d 00 be a resolution of d; d 0 2 C0+. Let d= c n f'mg and d 0= c 0 n f'mg with c;
c 02C+. The resolution d 00 was based on some atomic formula 'i=/ 'm . Then we can also
resolve c; c 0 by the same atomic formula 'i . Let c 00 be that resolution of c; c 0. Since C is
closed under resolution, c 002C, c 002C+, and d 00= c 00 n f'mg2C0+. qed(1)
(2) ;2/ C0+ or ;2/ C0¡.
Proof . If ; 2C0+ and ; 2C0¡, and since ; 2/ C we have f'mg 2C+ and f:'mg 2C¡. But
then the resolution ; of f'mg and f:'mg would be in C, contradiction. qed(2)
Case 1 . ;2/ C0+. Since C0+ is formed by removing the atomic formula 'm , C0

+ only contains
atomic formulas from f'0; :::; 'm¡1g. By the minimality of n and by (1), C0

+ is consistent.
LetM�C0+. By the proof of the model existence theorem we may assume thatM is a

term model. Since the equality sign � does not occur in C the term model can be formed
without factoring the terms in T S by some equivalence relation. This means that di�erent
terms are interpreted by di�erent elements of jMj.

We can assume that the atomic formula 'm is of the form rt0:::ts¡1 where r is an n-
ary relation symbol and t0; :::; ts¡12TS. Since the formula rt0:::ts¡1 does not occur within
C0
+, we can modify the model M to a model M0 by only modifying the interpretation

M(r) exactly at (M(t0); :::;M(ts¡1)). So let M0(r)(M(t0); :::;M(ts¡1)) be false. Then
M0�:'m . We show that M0�C.

Let c 2 C. If :'m 2 c then M0 � c . So assume that :'m 2/ c . Then c 2 C+ and
c nf'mg2C0+. ThenM� c n f'mg,M0� c n f'mg, andM0� c . But then C is consistent,
contradiction.
Case 2 . ; 2/ C0

¡. We can then proceed analogously to case 1, arranging that
M0(M(t0); :::;M(ts¡1)) be true. So we get a contradiction again. �

This means that the inconsistency check in the Herbrand or Gilmore proving algorithm
can be carried out even more systematically: produce all relevant resolution instances
until the empty clause is generated. Again we have correctness and completeness for the
enhanced algorithm with resolution.

Let us present an implementation of resolution (for ground formulas without variables)
by S. Panitz in Theorem Proving in a Russian Room and in Haskell . We are again using
a list presentation of sets:

¡ nub is a library function which removes double entries from lists thus making lists
more set-like;

¡ concat is the concatenation of a list of lists, corresponding to the union of a set of
sets;

¡ iterate yields an in�nite list of the iterations of the function allresolvents
applied to the original list xs;

52 Section 17



¡ ([],[]) represents the empty clause which stands for a contradiction;

¡ note that Haskell is able to do some computations with in�nite lists since it uses
lazy evaluation: to decide the predicate resPrf xs, the iterates are produced and
concatenated one by one; whether ([],[]) is an element of these concatenations
is checked repeatedly until success, so that a positive decision is available at some
�nite iterate;

¡ if there is no positive decision the process runs into an in�nite iteration and will
only stop due to a stack over�ow or other intervention.

> resolve(p1,n1)(p2,n2)=
[(nub((p1\\[l])++p2),nub(n1++(n2\\[l])))|l<-p1,elem l n2]

> breadth f xs = [f x y |x<-xs,y<-xs]
> allresolvents xs = xs ++ concat (breadth resolve xs)
> resPrf xs = elem ([],[]) (concat (iterate allresolvents xs))
> propRes = resPrf . cnf . nnf . Not

18 Uni�kation

Resolution is one of the main mechanisms behind the logic programming language Prolog.
Prolog programs can be viewed as conjunctions of universally quanti�ed clauses. A uni-
versally quanti�ed clause stands for all clauses that can be reached by substituting into the
free variables of the clause. Prolog searches systematically for clauses that can be resolved
after substitution. Prolog uses �minimal� substitutions (�uni�cations�) for those resolutions
and keeps track of the required substitutions. The composition of all those substitutions
is the computational result of the program: a minimal substitution to reach inconsistency.

To demonstrate how one can compute in Prolog let us consider the addition problem
�2 + 2 = ?�. Represent natural numbers by terms in a language with the constant symbol
zero and the successor function succ. The ground terms of the language are:

zero; succ(zero); succ(succ(zero)); :::

Addition is represented by a ternary predicate

add(X;Y ; Z)$X +Y =Z:

The following universal sentences axiomatize addition:

A1: 8X:add(X; zero; X)
A2: 8X;Y ; Z:(add(X;Y ; Z)! add(X; succ(Y ); succ(Z)))

Computing 2+2 can be viewed as an inconsistency problem:

4= succ(succ(succ(succ(zero))))

is the unique term t of the language such that the axioms A1 and A2 are inconsistent with

:add(succ(succ(zero)); succ(succ(zero)); t):

So the aim is to �nd a possibly iterated substitution for the variable V such that A1 and
A2 are inconsistent with

:add(succ(succ(zero)); succ(succ(zero)); V ):
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We can write these formulas in clausal form by omitting quanti�ers.

A1: fadd(X; zero; X)g
A2: f:add(X;Y ; Z); add(X; succ(Y ); succ(Z))g
A3: f:add(succ(succ(zero)); succ(succ(zero)); V )g

All variables are understood to be universally quanti�ed. So we can rename variables freely,
and we shall do so in order to avoid variable clashes.

In Prolog notation, the program to compute 2+2 can be written as follows, where the
implication in A2 is indicated by �:-�:

add(X,zero,X).
add(X,succ(Y),succ(Z) :- add(X,Y,Z).
?- add(succ(succ(zero)),succ(succ(zero)),V).

Execution of the program means to �nd substitutions and resolutions leading to incon-
sistency: we begin with the clauses

1. add(X; zero;X)
2. :add(X;Y ;Z); add(X; succ(Y ); succ(Z))
3. :add(succ(succ(zero)); succ(succ(zero)); V )

The clauses 2 and 3 can be resolved by making the literals add(X; succ(Y ); succ(Z))
and :add(succ(succ(zero)); succ(succ(zero)); V ) dual using the substitutions X : =
succ(succ(zero)), Y :=succ(zero), V : =succ(Z). This yields the resolution:

4. :add(succ(succ(zero)); succ(zero); Z)
This should again resolve against 2. To avoid variable clashes, we first rename the
(universal) variables in 2:

5. :add(X1; Y 1; Z1); add(X1; succ(Y 1); succ(Z1))
4 and 5 can be resolved by making the literals add(X1; succ(Y 1); succ(Z1)) and :
add(succ(succ(zero)); succ(zero); Z) dual using the substitutions X1:=succ(succ(zero)),
Y 1:=zero, Z: =succ(Z1). This yields the resolution:

6. :add(succ(succ(zero); zero; Z1)
This should resolve against 1. To avoid variable clashes, we �rst rename the (universal)
variables in 1 by �new� variables:

7. add(X2; zero; X2).
6 and 7 can be resolved by the substitutions X2: =succ(succ(zero)), Z1: =X2. This
yields the �false� resolution, as required:

8. fg

The combined substitution for V which lead to this contradiction is obtained by
�chasing� through the substitutions:

V = succ(Z)= succ(succ(Z1))= succ(succ(X2))= succ(succ(succ(succ(zero)))):

Thus 2+2=4!

Exercise 13. Addition and multiplication on the natural numbers can be formalized in Prolog by the
following program.

add(X,zero,X).
add(X,succ(Y),succ(Z) :- add(X,Y,Z).
mult(X,zero,zero).
mult(X,succ(Y),Z) :- mult(X,Y,W), add(W,X,Z).

The question 2� 2= ? is expressed by the query:

?- mult(succ(succ(zero)),succ(succ(zero)),V).

Please describe with pen and paper how Prolog calculates this product.
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In the Prolog example, clauses with variables were brought into agreement by substitu-
tion of variables by terms. Then resolution was applied by cancelling out complementary
literals. So far the substitutions used yielded ground instances, i.e., all variables were instan-
tiated by constant terms. On the other hand the resolution method works for arbitrary
substitutions. f'(x)g and f:'(y);  (y)g can be resolved into f (y)g by �rst trans-
forming f'(x)g into f'(y)g.

De�nition 85. Let Var = fvnjn < !g be the set of �rst-order variables. A substitution
is a map �:Var! T S into the set of S-terms. If only a �nite part of the substitution � is

relevant, it is usually written in the form �(v0):::�(vn¡1)

v0::::vn¡1
. The application of a substitution

to a term t or a formula ' is de�ned as before and written in the form t� or '�. Consider
a �nite set c= fL0; :::; Ll¡1g of literals. De�ne the substitution c�= fL0�; :::; Ll¡1�g.

a) A substitution � is a uni�er for fL0; :::; Ll¡1g if L0�= :::=Ll¡1�.

b) fL0; :::; Ll¡1g is uni�able if there is a uni�er for fL0; :::; Ll¡1g.

c) A uni�er � for fL0; :::; Ll¡1g is a most general uni�er for fL0; :::; Ll¡1g if every
uni�er � factors by �, i.e., there is another substitution � such that � = ���. Here
the composition of substitutions is de�ned by

���(vn)=�(vn) �:

Theorem 86. Let fL0; :::; Llg be a �nite uni�able set of literals. Then fL0; :::; Ll¡1g
possesses a most general uni�er, which can be constructed through a recursive syntactical
algorithm.

Proof. De�ne a sequence �0; :::; �N of substitutions by recursion. Set �0= id �Var .
Assume that �i is de�ned. If fL0 �i; :::; Ll �ig consists of one element then set N = i

and stop the recursion.
Now assume that fL0�i; :::; Ll�ig consists of more then one element. Let p be minimal

such that there are substituted literals Lj�i and Lk�i which di�er in their pth position (as
sequences of symbols). Let sj=/ sk be the pth element of Lj�i and Lk�i respectively.
Case 1 . sj ; sk2/ Var. Then set N = i and stop the recursion (�uni�cation impossible�).
Case 2 . sj 2 Var or sk 2 Var. Without loss of generality we may assume that sj 2 Var,
and we write x= sj . Let t be the subterm of Lk �i which starts at the pth position with
the symbol sk .
Case 2.1 . x2 var(t). Then set N = i and stop the recursion (�occur-check failed�).
Case 2.2 . x2/ var(t). Then set

�i+1=
t
x
��i

and continue the recursion.
(1) The recursion stops eventually.
Proof . �i+1 can only be de�ned via Case 2.2 . There, the variable x does not occur in t .
Applying the substitution t

x
to fL0�i; :::; Ll�ig removes the variable x from

fL0�i+1; :::; Ll�i+1g= fL0�i
t
x
; :::; Ll�i

t
x
g:

So the number of variables in fL0�i; :::; Ll�ig goes down by at least 1 in each step of the
recursion. Therefore the recursion must stop. qed(1)

Now let � be any uni�er for fL0; :::; Llg: L0 � = :::=Ll � .
(2) For i=0; :::; N there is a substitution �i such that � = �i ��i .
Proof . De�ne �i by recursion on i. Set �0= � . Then � = � � (id �Var)= �0 ��0 .
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Assume that �i is de�ned such that � = �i � �i and that i < N . Then �i+1 is de�ned
according to Case 2.2 . With the notations of that case: �i+1=

t

x
��i . Since � = �i ��i is a

uni�er for fL0; :::; Llg then �i is a uni�er for fL0�i; :::; Ll�ig. Thus the variable x and the
term t are uni�ed by �i : x�i= �i(x)= t�i . Set

�i+1=(�i n f(x; �i(x))g)[f(x; x)g:

We show that �i+1 � t

x
= �i : if y=/ x then

y
t
x
�i+1= y�i+1= y�i ;

if y=x then

y
t

x
�i+1= t�i+1= t�i (since x does not occur in t)=x�i= y�i :

Then

�i+1 ��i+1 = �i+1 � (
t
x
��i)

= (�i+1 �
t
x
) ��i

= �i ��i
= � :

�

We can now de�ne �rst-order resolution.

De�nition 87. Let c 0 and c 00 be clauses. Let the substitutions � 0: Var $ Var and � 00:
Var$Var be renamings of variables so that c 0� 0 and c 00� 00 do not have common variables.
Let fL1; :::; Lmg� c 0� 0 and fK1; :::;Kng� c 00� 00 be sets of literals such that

fL1; :::; Lm;K�1; :::; K�ng

is uni�able where m; n> 1 . Let � be a most general uni�er of fL1; :::; Lm; K�1; :::; K�ng.
Then the clause

c= [(c 0� 0 n fL1; :::; Lmg)[ (c 00� 00 n fK1; :::; Kng)]�

is a (�rst-order) resolution of c 0 and c 00.

Given the clauses c 0 and c 00 one just has to �nd parts (sometimes called factors) which
are uni�able and compute c . It is not necessary to ��nd� ground instances of the clauses. On
the other hand, resolution with ground instances can be gotten from �rst-order resolution
by lifting-techniques.

Theorem 88. Let c 0 and c 00 be clauses and let c0
0 and c0

00 be ground instances of c 0 and
c 00 which are resolvable. Let c0 be a resolution of c0

0 and c0
00. Then there is a �rst-order

resolution c of c 0 and c 00 such that c0 is a ground instance of c .

Proof. First let � 0:Var$Var and � 00:Var$Var be renamings of variables so that c 0� 0

and c 00� 00 do not have common variables. Since c00 and c000 are ground instances of c 0 and
c 00 they are also ground instances of c 0� 0 and c 00� 00. Let

c0
0 = c 0� 0� 0 and c000= c 00� 00� 00:

Since c 0� 0 and c 00� 00 do not have common variables we can assume that � 0 and � 00 substitute
disjoint sets of variables. Letting � = � 0 � � 00 we get

c0
0 = c 0� 0� and c000= c 00� 00� :
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Let the resolution c0 of c00 and c000 be �based� on the literal L: L2 c00 and L� 2 c000 and

c0=(c00 n fLg)[ (c000 n fL�g):

The literal L is a ground instance of possibly several literals L1; :::;Lm2 c 0� 0 by the ground
substitution � . Similarly the literal L� is a ground instance of possibly several literalsK1; :::;
Kn2 c 00� 00 by the ground substitution � . Now � uni�es fL1; :::; Lm;K�1; :::;K�ng into L. By
the theorem on the existence of most general uni�ers let � be a most general uni�er for

fL1; :::; Lm; K�1; :::;K�ng:
Then

c= [(c 0� 0 n fL1; :::; Lmg)[ (c 00� 00 n fK1; :::; Kng)]�

is a (�rst-order) resolution of c 0 and c 00. Since � is most general, take another substitution
� such that � = ���. Then

c0 = (c00 n fLg)[ (c000 n fL�g)
= (c 0� 0� n fLg)[ (c 00� 00� n fL�g)
= [(c 0� 0 n fL1; :::; Lmg)[ (c 00� 00 n fK1; :::; Kng)]�
= [(c 0� 0 n fL1; :::; Lmg)[ (c 00� 00 n fK1; :::; Kng)]��
= c�

is a ground instance of c . �

Theorem 89. Let C be a set of clauses and let c0= c�0 be a ground instance of c . Then
C ` c0 by resolution with ground clauses i� there is are substitutions � and � such that
C ` c� can be shown by �rst-order resolution and c0= c�� .

III Set Theory

Die Mengenlehre ist das Fundament
der gesamten Mathematik

(Felix Hausdorff,
Grundzüge der Mengenlehre, 1914)

19 Set theory

19.1 The origin of set theory
Georg Cantor characterized sets as follows:

Unter einerMenge verstehen wir jede ZusammenfassungM von bestimmten,
wohlunterschiedenen Objekten m unsrer Anschauung oder unseres Denkens
(welche die �Elemente� von M genannt werden) zu einem Ganzen.
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Felix Hausdorff in Grundzüge formulated shorter:

Eine Menge ist eine Zusammenfassung von Dingen zu einem Ganzen, d.h.
zu einem neuen Ding.

Sets are ubiquitous in mathematics. According to Hausdorff

Differential- und Integralrechnung, Analysis und Geometrie arbeiten
in Wirklichkeit, wenn auch vielleicht in verschleiernder Ausdrucksweise,
beständig mit unendlichen Mengen.

19.2 Set theoretic foundations of mathematics
In current mathematics, many notions are explicitly de�ned using sets. The following
example indicates that notions which are not set-theoretical prima facie can be construed
set-theoretically:

f is a real funktion � f is a set of ordered pairs (x; y) of real numbers, such
that ... ;
(x; y) is an ordered pair � (x; y) is a set :::fx; yg::: ;
x is a real number � x is a left half of a Dedekind cut in Q � x is a subset
of Q, such that ::: ;
r is a rational number � r is an ordered pair of integers, such that ::: ;
z is an integer � z is an ordered pair of natural numbers (= non-negative
integers);
N= f0; 1; 2; :::g;
0 is the empty set;
1 is the set f0g;
2 is the set f0; 1g; etc. etc.

We shall see that all mathematical notions can expressed in the language of sets.
Besides this foundational role, set theory is also the mathematical study of the in�nite.

There are in�nite sets likeN;Q;Rwhich can be subjected to the constructions and analyses
of set theory; there are various degrees of in�nity which lead to a rich theory of in�nitary
combinatorics.

The notion of set is adequately formalized in �rst-order axiom systems introduced by
Zermelo, Fraenkel and others. Together with the Gödel completeness theorem for
�rst-order logic this constitutes a �formalistic� answer to the question �what is mathem-
atics�: mathematics consists of formal proofs from the axioms of Zermelo-Fraenkel set
theory.

De�nition 90. Let 2 be a binary in�x relation symbol; read x2 y as �x is an element of
y�. The language of set theory is the language f2g. The formulas in Lf2g are called set
theoretical formulas or 2-formulas. We write L2 instead of Lf2g.

The naive notion of set is intuitively understood and was used extensively in previous
chapters. The following axioms describe properties of naive sets. Note that the axiom
system is an in�nite set of axioms. It seems unavoidable that we have to go back to some
previously given set notions to be able to de�ne the collection of set theoretical axioms -
another example of the frequent circularity in foundational theories.
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De�nition 91. The axiom system ST of set theory consists of the following axioms:

a) The axiom of extensionality (Ext):

8x8y(8z(z 2x$ z 2 y)!x� y)

- a set is determined by its elements, sets having the same elements are identical.

b) The pairing axiom (Pair):

8x8y9z8w (w 2 z$w�x_w� y):

- z is the unordered pair of x and y.

c) The union axiom (Union):

8x9y8z(z 2 y$9w(w 2x^ z 2w))

- y is the union of all elements of x.

d) The powerset axiom (Pow):

8x9y8z(z 2 y$8w(w 2 z!w 2x))

- y consists of all subsets of x.

e) The separation schema (Sep) postulates for every 2-formula '(z; x1; :::; xn):

8x1:::8xn8x9y8z (z 2 y$z 2x^ '(z; x1; :::; xn))

- this is an in�nite scheme of axioms, the set z consists of all elements of x which
satisfy '.

f ) The replacement schema (Rep) postulates for every 2-formula '(x; y; x1; :::; xn):

8x1:::8xn(8x8y8y 0(('(x; y; x1; :::; xn)^ '(x; y 0; x1; :::; xn))! y� y 0)!
8u9v8y (y 2 v$9x(x2u^ '(x; y; x1; :::; xn))))

- v is the image of u under the map de�ned by '.

g) The foundation schema (Found) postulates for every 2-formula '(x; x1; :::; xn):

8x1:::8xn(9x'(x; x1; :::; xn)!9x('(x; x1; :::; xn)^8x0(x02x!:'(x0; x1; :::; xn))))

- if ' is satis�able then there are 2-minimal elements satisfying '.

The axiom of extensionality expresses that a set is only determined by its elements.
There is no further structure in a set; the order or multiplicity of elements does not matter.
The axiom of extensionality can also be seen as a de�nition of � in terms of 2 :

8x8y(x� y$8z(z 2x$ z 2 y)):

The separation schema (�Aussonderung�) is the crucial axiom of Zermelo set theory.
Gottlob Frege had used the more liberal comprehension schema

8x1:::8xn9y8z (z 2 y$'(z; x1; :::; xn))

without restricting the variable z to some x on the right hand side. This however led to
the famous Russell paradox and is thus inconsistent. Zermelo's restriction apparently
avoids contradiction.

The replacement schema was added by Abraham Fraenkel to postulate that func-
tional images of sets are sets.

Set theory 59



The foundation schema by Mirimanoff allows to carry out induction on the binary
relation 2 . To prove a universal property by contradiction one can look at a minimal
counterexample and argue that the property is inherited from the elements of a set to the
set. The schema is used seldomly in mathematical practice, but it is very convenient for
the development of set theory.

Note that the axioms of ST do not postulate the existence of in�nite sets, and indeed
one can easily build a canonical model of ST consisting only of �nite sets. Such a model
can be de�ned over the structure N=(N;+; �;0; 1). The theory ST has the same strength
as �rst-order Peano arithmetic (PA).

The theory would become much stronger, if the axiom of in�nity (Inf) was added:

9x(9y (y 2x^8z:z 2 y)^8y(y 2 x!9z(z 2x^8w(w 2 z$w 2 y_w� y)))):

Intuitively, the closure properties of x ensure that x is in�nite. The strengthened theory
is Zermelo-Fraenkel set theory (without the axiom of choice), which is usually taken
as the universal foundation of mathematics. We work with the weaker theory ST, since
we want to show the Gödel incompleteness theorems for ST, which are alternative rep-
resentations of the original Gödel incompleteness theorems for PA.

De�nition 92. The system ZF of the Zermelo-Fraenkel axioms of set theory consists
of the axioms of ST together with the axiom of in�nity. The axiom system ZF¡ consists
of the ZF-axioms except the power set axiom. The system EML (�elementary set theory�)
consists of the axioms Ex, Ext, Pair, and Union.

Exercise 14. The system ST without the separation schema implies the separation schema.

19.3 Class terms
Most of the axioms have a form like

8x~9y8z (z 2 y$ '):

Intuitively, y is the collection or class of sets z which satisfy '. The common notation for
that class is

fz j'g:

This is to be seen as a term, which assigns to the other parameters in ' the value fz j'g.
Since the result of such a term is not necessarily a set we call such terms class terms. It
is very convenient to employ class terms within 2-formulas. We view this notation as an
abbreviation for �pure� 2-formulas.

De�nition 93. A class term is of the form fxj'g where x is a variable and ' 2 L2. If
fxj'g and fy j g are class terms then

¡ u2fxj'g stands for 'u
x
;

¡ u= fxj'g stands for 8v (v 2 u$ '
v

x
);

¡ fxj'g=u stands for 8v (' v
x
$ v 2u);

¡ fxj'g= fy j g stands for 8v (' v
x
$  

v

y
);

¡ fxj'g2u stands for 9v(v 2u^ v= fxj'g;

¡ fxj'g2fy j g stands for 9v( v
y
^ v= fxj'g.
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In this notation, the separation schema becomes:

8x1:::8xn8x9y y= fz jz 2x^ '(z; x1; :::; xn)g:

We shall further extend this notation, �rst by giving speci�c names to important formulas
and class terms.

De�nition 94.

a) ; := fxjx=/ xg is the empty set;

b) V := fxjx=xg is the universe.

We work in the theory ZF for the following propositions.

Proposition 95.

a) ;2V.
b) V 2/ V (Russell's antinomy).

Proof. a) ;2V abbreviates the formula

9v(v= v ^ v= ;):

This is equivalent to 9v v= ; which again is an abbreviation for

9v 8w (w 2 v$w=/ w):

Consider an arbitrary set x . Then the formula is equivalent to

9v 8w (w 2 v$w 2x^w=/ w):
This follows from the instance

8x9y8z (z 2 y$z 2x^ z=/ z)

of the separation schema for the formula z=/ z .
b) Assume that V 2V . By the schema of separation

9y y= fz jz 2V ^ z 2/ zg:
Let y= fz jz 2V ^ z 2/ zg. Then

8z (z 2 y$ z 2V ^ z 2/ z):
This is equivalent to

8z (z 2 y$ z 2/ z):

Instantiating the universal quanti�er with y yields

y 2 y$ y2/ y
which is a contradiction. �

De�nition 96. Let A be a term. We also say that A is a class. A is a set i� A2V. A is
a proper class i� A2/ V.

Set theory deals with sets and proper classes. Sets are the favoured objects of set theory,
the axioms mainly state favourable properties of sets and set existence. Sometimes one
says that a term A exists if A 2 V . The intention of set theory is to construe important
mathematical classes like the collection of natural and real numbers as sets so that they
can be treated set-theoretically. Zermelo observed that this is possible by requiring some
set existences together with the restricted separation principle.
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Exercise 15. Show that the class ffxgjx2V g of singletons is a proper class.

We introduce further abbreviations. By a term we understand a class term or a variable,
i.e., those terms which may occur in an extended 2-formula. We also introduce bounded
quanti�ers to simplify notation.

19.4 Properties of classes

De�nition 97. Let A be a term. Then 8x2A' stands for 8x(x2A! ') and 9x2A'
stands for 9x (x2A^ ').

De�nition 98. Let x; y; z; ::: be variables and X;Y ;Z; ::: be class terms. De�ne

a) X �Y :=8x2X x2Y, X is a subclass of Y ;

b) X [Y := fxjx2X _ x2Y g is the union of X and Y ;

c) X \Y := fxjx2X ^ x2Y g is the intersection of X and Y ;

d) X nY := fxjx2X ^x2/ Y g is the di�erence of X and Y ;

e)
S
X := fxj9y 2X x2 yg is the union of X ;

f )
T
X := fxj8y 2X x2 yg is the intersection of X ;

g) P(X)= fxjx�Xg is the power class of X;

h) fXg= fxjx=Xg is the singleton set of X;

i) fX;Y g= fxjx=X _ x=Y g is the (unordered) pair of X and Y;

j ) fX0; :::; Xn¡1g= fxjx=X0_ :::_x=Xn¡1g.

One can prove the well-known boolean properties for these operations. We only give a
few examples.

Proposition 99. X �Y ^Y �X!X =Y.

Proposition 100.
S
fx; yg=x[ y.

Proof. We show the equality by two inclusions:
(�). Let u2

S
fx; yg. 9v(v 2fx; yg^u2 v). Let v2fx; yg^u2 v. (v=x_ v= y)^u2 v.

Case 1 . v=x. Then u2x. u2x_ u2 y. Hence u2x[ y.
Case 2 . v= y. Then u2 y. u2x_u2 y. Hence u2x[ y.

Conversely let u2 x[ y. u2x_u2 y.
Case 1 . u2x. Then x2fx; yg^u2x. 9v(v 2fx; yg^u2 v) and u2

S
fx; yg.

Case 2 . u2 y. Then x2fx; yg^ u2x. 9v(v 2fx; yg^u2 v) and u2
S
fx; yg. �

Combining the axioms of pairing and unions we obtain:

Lemma 101. 8x0; :::; xn¡1 fx0; :::; xn¡1g2V .

Note that this is a schema of lemmas, one for each ordinary natural number n . We
prove the schema by complete induction on n .

Proof. For n=0;1;2 the lemma states that ;2V , 8x fxg2V , and 8x; y fx; yg2V resp.,
and these are true by previous axioms and lemmas. For the induction step assume that
the lemma holds for n , n> 1. Consider sets x0; :::; xn . Then

fx0; :::; xng= fx0; :::; xn¡1g[fxng:
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The right-hand side exists in V by the inductive hypothesis and the union axiom. �

Remark 102. We are developing the axiom systems ST and ZF. These will be in�nite
schemas, lists, or sets of formulas. These schemas are formulated in the common mathem-
atical language, which is able to speak about formulas, in particular 2-formulas, and is also
able to speak about in�nite collections of formulas. If we assume in�nitely many axioms, we
can conclude in�nitely many consequences, like the above Lemma(s): 8x0; :::; xn¡1 fx0; :::;
xn¡1g 2 V . We view the common mathematical language as a meta language which is
able to speak about an object language like the language of set theory. The meta language
has common mathematical tools available. For example induction and recursion on the
common natural numbers, to perform the recursion in the previous schema of lemmas. We
shall approach the problem of meta theory versus object theory in an informal naive way.

19.5 Set-theoretical axioms in class term notation
We can now reformulate set-theoretical axioms using class terms; for brevity we omit initial
universal quanti�ers.

a) Extensionality: x� y^ y�x!x= y.

b) Pairing: fx; yg2V .

c) Union:
S
x2V .

d) Powerset: P(x)2V .

e) Separation schema: for all terms A

x\A2V :

f) Replacement: see later.

g) Foundation: for all terms A

A=/ ;!9x2A x\A= ;:

Also the axiom of in�nity can be written as

9x (;2 x^8u2x u[fug2x):

20 Relations and functions

20.1 Ordered pairs and cartesian products
Ordered pairs are the basis for the theory of relations.

De�nition 103. (x; y)= ffxg; fx; ygg is the ordered pair of x and y .

Remark 104. There are sometimes discussions whether (x; y) is the ordered pair of x
and y , or to what degree it agrees with the intuitive notion of an ordered pair. Anyway,
the next proposition shows that the set-theoretical term (x; y) has the properties expected
from an intuitive ordered pair within the axiom system ST. There are, however, many
other terms t(x; y) that could be used instead of our choice.

Proposition 105. (x; y)2V, i.e., (x; y) is a set.
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(x; y)= (x0; y 0)!x= y ^x0= y 0.

De�nition 106. Let t(x~ ) be a term in the variables x~ and let ' be an 2-formula. Then
ft(x~ )j'g stands for fz j9x~ ('^ z= t(x~ )g.

De�nition 107. Let A;B;R be terms. De�ne the cartesian product of A and B as

A�B= f(a; b)ja2A^ b2Bg:

By the speci�c implementation of Kuratowski ordered pairs:

Lemma 108. A�B �P(P(A[B)).

Proof. Let (a; b)2A�B. Then

a; b 2 A[B
fag; fa; bg � A[B
fag; fa; bg 2 P(A[B)

(a; b) = ffag; fa; bgg � P(A[B)
(a; b) = ffag; fa; bgg 2 P(P(A[B))

�

Proposition 109. x� y 2V.

Proof. Exercise. �

20.2 Relations

De�nition 110. Let R be a term. De�ne

a) R is a (binary) relation if R�V �V.

b) If R is a binary relation write aRb instead of (a; b)2R.

We can now introduce the standard notions and operations for relations:

De�nition 111. Let R;S;A be terms.

a) The domain of R is dom(R) := fxj9yxRyg.

b) The range of R is ran(R) := fy j9xxRyg.

c) The �eld of R is �eld(R) := dom(R)[ ran(R).

d) The restriction of R to A is R �A := f(x; y)jxRy^x2Ag.
e) The image of A under R is R[A] :=R00A := fy j9x2AxRyg.

f ) The preimage of A under R is R¡1[A] := fxj9y 2AxRyg.

g) The composition of S and R (�S after R�) is S �R := f(x; z)j9y (xRy^ySz)g.

h) The inverse of R is R¡1:=f(y; x)jxRyg.

Relations can play di�erent roles in mathematics.
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De�nition 112. Let R be a relation.

a) R is re�exive i� 8x2�eld(R) xRx .

b) R is irre�exive i� 8x2�eld(R) :xRx .
c) R is symmetric i� 8x; y (xRy!yRx).

d) R is antisymmetric i� 8x; y (xRy^ yRx!x= y).

e) R is transitive i� 8x; y; z (xRy^yRz!xRz).

f ) R is connex i� 8x; y 2�eld(R) (xRy_ yRx_x= y).

g) R is an equivalence relation i� R is re�exive, symmetric and transitive.

h) Let R be an equivalence relation. Then [x]R : =fy jyRxg is the equivalence class of
x modulo R .

It is possible that an equivalence class [x]R is not a set: [x]R2/ V . Then the formation
of the collection of all equivalence classes modulo R may lead to contradictions. Another
important family of relations is given by order relations.

De�nition 113. Let R be a relation.

a) R is a partial order i� R is re�exive, transitive and antisymmetric.

b) R is a linear order i� R is a connex partial order.

c) Let A be a term. Then R is a partial order on A i� R is a partial order and
�eld(R)=A .

d) R is a strict partial order i� R is transitive and irre�exive.

e) R is a strict linear order i� R is a connex strict partial order.

Partial orders are often denoted by symbols like 6, and strict partial orders by <. A
common notation in the context of (strict) partial orders R is to write

9pRq' and 8pRq' for 9p(pRq ^ ') and 8p(pRq!') resp.

20.3 Functions
One of the most important notions in mathematics is that of a function.

De�nition 114. Let F be a term. Then F is a function if it is a relation which satis�es

8x; y; y 0 (xFy^xFy 0!y= y 0):

If F is a function then

F (x): =fuj8y (xFy!u2 y)g
is the value of F at x.

If F is a function and xFy then y=F (x). If there is no y such that xFy then

F (x)=
\
xFy

y=
\
;=V :

The �value� V at x may be read as �unde�ned�. A function can also be considered as the
(indexed) sequence of its values, and we also write

(F (x))x2A or (Fx)x2A instead of F :A!V :
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We de�ne notions associated with functions.

De�nition 115. Let F ;A;B be terms.

a) F is a function from A to B, or F : A! B, i� F is a function, dom(F ) = A, and
range(F )�B .

b) F is a partial function from A to B, or F :A*B, i� F is a function, dom(F )�A,
and range(F )�B .

c) F is a surjective function from A to B i� F :A!B and range(F )=B.

d) F is an injective function from A to B i� F :A!B and

8x; x02A (x=/ x0!F (x)=/ F (x0))

e) F is a bijective function from A to B, or F :A$B, i� F :A!B is surjective and
injective.

f ) AB: =ff jf :A!Bg is the class of all functions from A to B.

Using functional notation we may now write the replacement schema as

F is a function ! F [x]2V .

One could now develop the usual theory of functions, formalize notions like surjective,
injective, bijective, and prove that fundamental properties hold.

Proposition 116.

a) xy �P(x� y).

b) xy 2V.

21 Ordinal numbers, induction and recursion

As a foundation of mathematics, set theory has to support the common systems of natural
and real numbers. These will be constructed using a class of numbers speci�c for set theory,
the ordinal numbers, which possibly extend the intuitive natural numbers beyond the �nite.
Whereas commonly natural numbers are used to enumerate �nite sets, ordinal numbers
will be used to enumerate arbitrary sets. Ordinal numbers allow induction and recursion.

21.1 2-Induction
The axiom schema of foundation provides structural information about the set theoretic
universe V . Viewing 2 as some kind of order relation it states that every non-empty class
has an 2-minimal element x 2 A such that the 2-predecessors of x are not in A. In the
usual natural numbers, the existence of minimal numbers is equivalent to induction. We
have a similar situation in set theory:

Theorem 117. The foundation scheme is equivalent to the following, Peano-type, induc-
tion scheme: for every term B postulate

8x (x�B!x2B)!B=V :
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This says that if being in B is always �inherited� from all elements of a set to the set
itself, then every set is in B. Since being an element of a class term B = fxj '(x; x~ )g
is equivalent to satisfying ' we can rewrite the induction principle in a form similar to
�complete induction� for natural numbers

8x((8y 2x'(y; x~ ))! '(x; x~ ))!8x'(x; x~ ):

Proof. We prove the theorem by a chain of equivalences:

8x (x�B!x2B)!B=V
, B=/ V !:8x (x�B!x2B)
, V nB=/ ;!9x (x�B ^x2/ B)
, V nB=/ ;!9x (x2 (V nB)^ x\ (V nB)= ;):

The latter is an instance of foundation for the class V nB . �

This leads to:

Exercise 16. A relation R on a domain D is called wellfounded , i� for all terms A

;=/ A^A�D!9x2A A\fy jyRxg= ; :

Formulate and prove a principle for R-induction on D which coressponds to the assumption that R is
wellfounded on D.

Exercise 17. Consider the axiom system HF consisting of the axioms of EML together with the
induction principle: for every term B postulate

8x; y (x�B ^ y 2B!x[fyg2B)!B=V :

Show that every axiom of ZF except Inf is provable in HF, and that HF proves the negation of Inf
(HF axiomatizes the heriditarily finite sets, i.e., those sets such that the set itself and all its iterated
elements are �nite).

21.2 Ordinal numbers

De�nition 118.

a) 0:=; is the number zero.

b) For any term t, t+1:=t[ftg is the successor of t.

We have to make sure that the +1-operation produces �new� numbers and does not run
into some kind of dead end or circle, where, e.g., t+1= t . We use Foundation for this:

Lemma 119. Let n be a natural number >1 . Then there are no x0; :::; xn¡1 such that

x02x12 :::2xn¡12x0 :

Proof. Assume not and let x02x12 :::2xn¡12x0 . Let

A= fx0; :::; xn¡1g:

A=/ ; since n> 1 . By foundation take x2A such that A\x= ; .
Case 1 . x=x0 . Then xn¡12A\ x= ; , contradiction.
Case 2 . x=xi , i > 0 . Then xi¡12A\x= ; , contradiction. �

Lemma 120.

a) x=/ x+1;
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b) the function x 7!x+1 is injective.

Proof. b) Assume x+1=x[fxg= y[fyg= y+1 but x=/ y . This implies x2/ fyg and
x2 y . Similarly y 2/ fxg and y 2x . This 2-cycle contradicts the previous Lemma. �

Let us de�ne set-theoretic analogues of the standard natural numbers:

De�nition 121. De�ne

a) 1:=0+1;

b) 2:=1+1;

c) 3:=2+1; ...

From the context it will be clear, whether �3�, say, is meant to be the standard number
�three� or the set theoretical object

3 = 2[f2g
= (1+1)[f1+ 1g
= (f;g[ff;gg)[ff;g[ff;ggg
= f;; f;g; f;g[ff;ggg:

The set-theoretic axioms ensure that this interpretation of �three� has essential number-
theoretic properties of �three�.

Remark 122. With our de�nitions, the axiom of in�nity is equivalent to

9x (02x^8n2x n+12x):

Intuitively this says that there is a set f0; 1; 2; 3; :::g which contains all natural numbers
(and possibly further elements).

So far, we only have formalizations of speci�c numbers like 0; 1; 2; :::. We arrive at a
general notion of �number� by identifying a common property of those numbers and making
that the de�ning property for ordinal numbers. Not that

1. �Numbers� are ordered by the 2-relation:
m<n i� m2n:

E.g., 12 3 but not 32 1.
2. On each �number�, the 2-relation is a strict linear order : 3 = f0; 1; 2g is strictly

linearly ordered by 2.

3. �Numbers� are �complete� with respect to smaller �numbers�

i < j <m! i2m:

This can be written with the 2-relation as

i2 j 2m! i2m:

The latter is the notion transitivity essential for (axiomatic) set theory:

De�nition 123.

a) A is transitive, Trans(A), i� 8y 2A8x2 y x2A .

b) x is an ordinal (number), Ord(x), if Trans(x)^8y 2 xTrans(y).
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c) Let Ord: =fxjOrd(x)g be the class of all ordinal numbers.

We shall use small greek letter �; �; ::: as variables for ordinals. So 9�' stands for
9�2Ord ', and f�j'g for f�jOrd(�)^ 'g.

Exercise 18. Show that arbitrary unions and intersections of transitive sets are again transitive.

We shall see that the ordinals extend the standard natural numbers. Ordinals are
particularly adequate for enumerating in�nite sets.

Theorem 124.

a) 02Ord.

b) 8� �+12Ord .

Proof. a) Trans(;) since formulas of the form 8y 2 ;::: are tautologously true. Similarly
8y 2; Trans(y).
b) Assume �2Ord.
(1) Trans(�+1).
Proof . Let u2 v 2�+1=�[f�g.
Case 1 . v 2�. Then u2���+1, since � is transitive.
Case 2 . v=�. Then u2���+1. qed(1)
(2) 8y 2�+1Trans(y).
Proof . Let y 2�+1=�[f�g.
Case 1 . y 2�. Then Trans(y) since � is an ordinal.
Case 2 . y=�. Then Trans(y) since � is an ordinal. �

Exercise 19.

a) Let A�Ord be a term, A=/ ; . Then
T
A2Ord .

b) Let x�Ord be a set. Then
S
x2Ord .

Theorem 125. Trans(Ord).

Proof. This follows immediately from the transitivity de�nition of Ord. �

Exercise 20. Show that Ord is a proper class. (Hint: if Ord2V then Ord2Ord.)

Theorem 126. The class Ord is strictly linearly ordered by 2, i.e.,

a) 8�; �; 
 (�2 � ^ � 2 
!�2 
).

b) 8� �2/ �.

c) 8�; � (�2 � _�= � _ � 2�).

Proof. a) Let �; �; 
 2Ord and �2 � ^ � 2 
. Then 
 is transitive, and so �2 
.
b) follows immediately from the non-circularity of the 2-relation.
c) Assume that there are �incomparable� ordinals. By the foundation schema choose �02
Ord 2-minimal such that 9�:(�02 �_�0= �_ �2�0). Again, choose �02Ord 2-minimal
such that :(�02 �0_�0= �0_ �02�0). We obtain a contradiction by showing that �0= �0:

Let �2�0 . By the 2-minimality of �0 , � is comparable with �0 : �2�0_�=�0_�02� .
If �= �0 then �02�0 and �0; �0 would be comparable, contradiction. If �02� then �02�0
by the transitivity of �0 and again �0; �0 would be comparable, contradiction. Hence
�2 �0 .
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For the converse let � 2 �0 . By the 2-minimality of �0 , � is comparable with
�0 : � 2 �0 _ � = �0 _ �0 2 � . If � = �0 then �0 2 �0 and �0; �0 would be comparable,
contradiction. If �0 2 � then �0 2 �0 by the transitivity of �0 and again �0; �0 would be
comparable, contradiction. Hence � 2�0 .

But then �0= �0 contrary to the choice of �0 . �

De�nition 127. Let <: =2\(Ord � Ord) = f(�; �)j� 2 �g be the natural strict linear
ordering of Ord by the 2-relation.

Theorem 128. Let �2Ord. Then �+1 is the immediate successor of � in the 2-relation:
a) �<�+1;

b) if � <�+1, then �=� or � <�.

De�nition 129. Let � be an ordinal. � is a successor ordinal, Succ(�), i� 9� �= �+1 .
� is a limit ordinal, Lim(�), i� �=/ 0 and � is not a successor ordinal. Also let

Succ: =f�jSucc(�)g and Lim := f�jLim(�)g:

The existence of limit ordinals will be discussed together with the formalization of the
natural numbers.

21.3 Ordinal induction
Ordinals satisfy an induction theorem which generalizes complete induction on the integers:

Theorem 130. Let '(x; v0; :::; vn¡1) be an 2-formula and x0; :::; xn¡12 V. Assume that
the property '(x; x0; :::; xn¡1) is inductive, i.e.,

8�(8� 2� '(�; x0; :::; xn¡1)! '(�; x0; :::; xn¡1)):

Then ' holds for all ordinals:

8�'(�; x0; :::; xn¡1):

Proof. The inductivity assumption expands to

8x(x2Ord! ((8y 2x (y 2Ord! '(y; x~ )))! '(x; x~ )))

with ordinary variables x; y which are not pretyped as ordinals. Since A! (B! C) is
propositionally equivalent to B! (A!C) the expansion is equivalent to

8x((8y 2x (y 2Ord! '(y; x~ )))! (x2Ord! '(x; x~ ))):

This means that the property (x2Ord!'(x;x~ )) is inductive in the sense of the induction
schema for 2. So by that induction schema:

8x(x2Ord! '(x; x~ ))

which is equivalent to the desired

8�'(�; x0; :::; xn¡1): �

Induction can be formulated in various forms:

Exercise 21. Prove the following trans�nite induction principle: Let '(x) = '(x; v0; :::; vn¡1) be an
2-formula and x0; :::; xn¡12V . Assume

a) '(0) (the initial case),
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b) 8� ('(�)! '(�+1)) (the successor step),

c) 8�2Lim (8�<�'(�)!'(�)) (the limit step).

Then 8�'(�).

21.4 Ordinal recursion
Recursion, often also called induction, over the natural numbers is a ubiquitous method
for de�ning mathematical objects. We prove the following recursion theorem for ordinals.

Theorem 131. Let G: V ! V. Then there is a canonical class term F, given by the
subsequent proof, such that

F :Ord!V and 8� F (�)=G(F ��):

We then say that F is de�ned recursively (over the ordinals) by the recursion rule G. F is
unique in the sense that if another term F 0 satis�es

F 0:Ord!V and 8� F 0(�)=G(F 0 ��)
then F =F 0.

Proof. We say that H: dom(H)!V is G-recursive if

dom(H)�Ord ;dom(H) is transitive, and 8�2dom(H) H(�)=G(H ��):

(1) Let H; H 0 be G-recursive. Then H; H 0 are compatible, i.e., 8� 2 dom(H) \
dom(H 0) H(�)=H 0(�).
Proof . We want to show that

8�2Ord (�2 dom(H)\dom(H 0)!H(�)=H 0(�)):

By the induction theorem it su�ces to show that �2dom(H)\dom(H 0)!H(�)=H 0(�)
is inductive, i.e.,

8� 2 Ord (8y 2 � (y 2 dom(H) \ dom(H 0) !H(y) = H 0(y)) ! (� 2 dom(H) \
dom(H 0)!H(�)=H 0(�))):

So let � 2Ord and 8y 2 � (y 2 dom(H)\ dom(H 0)!H(y) =H 0(y)). Let � 2 dom(H)\
dom(H 0). Since dom(H) and dom(H 0) are transitive, �� dom(H) and �� dom(H 0). By
assumption

8y 2� H(y)=H 0(y):

Hence H ��=H 0 ��. Then
H(�)=G(H ��)=G(H 0 ��)=H 0(�):

qed(1)
Let

F : =
[
ff jf is G-recursiveg:

be the union of the class of all approximations to the desired function F .
(2) F is G-recursive.
Proof . By (1), F is a function. Its domain dom(F ) is the union of transitive classes of
ordinals and hence dom(F )�Ord is transitive.

Let �2dom(F ). Take some G-recursive functionf such that �2dom(f). Since dom(f)
is transitive, we have

��dom(f)�dom(F ):
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Moreover

F (�)= f(�)=G(f ��)=G(F ��):
qed(2)
(3) 8� �2dom(F ).
Proof . By induction on the ordinals. We have to show that �2dom(F ) is inductive in the
variable �. So let �2Ord and 8y 2� y 2dom(F ). Hence �� dom(F ). Let

f =F ��[f(�;G(F ��))g:

f is a function with dom(f)=�+12Ord. Let �0<�+1. If �0<� then

f(�0)=F (�0)=G(F ��0)=G(f ��0):
if �0=� then also

f(�0)= f(�)=G(F ��)=G(f ��)=G(f ��0):

Hence f is G-recursive and �2dom(f)�dom(F ). qed(3)
The extensional uniqueness of F follows from (1) �

Theorem 132. Let a02 V, Gsucc:Ord� V ! V, and Glim:Ord� V ! V. Then there is a
canonically de�ned class term F :Ord!V such that

a) F (0)= a0 ;

b) 8�F (�+1)=Gsucc(�; F (�));

c) 8�2Lim F (�)=Glim(�; F ��).
Again F is unique in the sense that if some F 0 also satis�es a)-c) then F =F 0.

We say that F is recursively de�ned by the properties a)-c).

Proof. We incorporate a0 , Gsucc , and Glim into a single recursion rule G:V !V ,

G(f)=

8>>>>>><>>>>>>:
a0 , if f = ;;
Gsucc(�; f(�)) , if f :�+1!V ;
Glim(�; f) , if f :�!V and Lim(�);
; , else:

Then the term F : Ord ! V de�ned recursively by the recursion rule G satis�es the
theorem. �

In many cases, the limit rule will just require to form the union of the previous values
so that

F (�)=
[
�<�

F (�):

Such recursions are called continuous (at limits).

21.5 Ordinal arithmetic
We extend the recursion rules of standard integer arithmetic continuously to obtain
trans�nite version of the arithmetic operations. The initial operation of ordinal arith-
metic is the +1-operation de�ned before. Ordinal arithmetic satis�es some but not all
laws of integer arithmetic.
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De�nition 133. De�ne ordinal addition +:Ord�Ord!Ord recursively by

�+0 = �

�+(�+1) = (�+�)+ 1
�+� =

[
�<�

(�+�) , for limit ordinals �

De�nition 134. De�ne ordinal multiplication � :Ord�Ord!Ord recursively by

� � 0 = 0
� � (�+1) = (� ��)+ �

� �� =
[
�<�

(� ��) , for limit ordinals �

De�nition 135. De�ne ordinal exponentiation __ :Ord�Ord!Ord recursively by

�0 = 1
��+1 = �� � �
�� =

[
�<�

�� , for limit ordinals �

Exercise 22. Explore which of the standard ring axioms hold for the ordinals with addition and
multiplication. Give proofs and counterexamples.

21.6 Sequences
(Finite and in�nite) sequences are important in many contexts.

De�nition 136.

a) A set w is an �-sequence i� w:�!V; then � is called the length of the �-sequence
w and is denoted by jw j. w is a sequence i� it is an �-sequence for some � .

b) Let w:�!V and w 0:�0!V be sequences. Then the concatenation w^w 0:�+�0!V
is de�ned by

(w^w 0) ��=w and 8i<�0 (w^w 0)(�+ i)=w 0(i):

c) Let w:�!V and x2V. Then the adjunction wx of w by x is de�ned as

wx=w^f(0; x)g:

Sequences and the concatenation operation satisfy algebraic laws of a monoid with
some cancellation rules.

Proposition 137. Let w;w 0; w 00 be sequences. Then

a) (w^w 0)^w 00=w^(w 0 ^w 00).

b) ;^w=w^;=w .

c) w^w 0=w^w 00!w 0=w 00.

There are many other operations on sequences. One can permute sequences, substitute
elements of a sequence, etc.
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22 Cardinals

Set theory is mainly concerned with �sizes� of arbitrary sets.

De�nition 138.

a) x and y are equipollent, or equipotent, or have the same cardinality, written x� y,
if 9ff :x$ y .

b) x has cardinality at most that of y, written x4 y, if 9ff :x! y is injective.

c) We write x� y for x4 y and x� y .

These relations are easily shown to satisfy

Lemma 139.

a) � is an equivalence relation on V.

b) x� y!x4 y^y4x .
c) x4x .
d) x4 y^y4 z!x4 z .
e) x� y!x4 y .

The next Theorem is Cantor's famous result that a powerset has strictly more elements
than the original set, expressed by the existence of injective functions.

Theorem 140. Let x2V.

a) There is an injective map f :x!P(x).

b) There is no injective map g:P(x)!x .

c) x�P(x).

Proof. a) De�ne the map f :x!P(x) by u 7! fug. This is a set since

f = f(u; fug)ju2xg�x�P(x)2V :

f is injective: let u; u02x, u=/ u0. By extensionality,

f(u)= fug=/ fu0g= f(u0):

b) Assume there were an injective map g:P(x)!x . De�ne the Cantorean set

c= fuju2x^ u2/ g¡1(u)g2P(x)

similar to the class R in Russell's paradox.
Let u0= g(c). Then g¡1(u0)= c and

u02 c$u02/ g¡1(u0)= c:
Contradiction. �

We shall show later that the axiom of choice implies that every set is equipollent with an
ordinal (Theorem 163 c). This motivates to take the minimal such ordinal as the canonical
representative of the equivalence class with respect to �, called the cardinality of x . But
even without the axiom of choice we make the formal de�nition
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De�nition 141.

a) card(x) = min f�j 9ff : � $ xg is the cardinality of the set x. One also writes
x��= card(x).

b) An ordinal � is a cardinal i� �= card(x) for some set x.

c) Let Cd= f�2Ord j� is a cardinal g be the class of all cardinals.

Note that card(x) is unde�ned in case x is not equipollent with an ordinal.

23 Natural numbers and �nite sets

23.1 Natural numbers
Die ganzen Zahlen hat der liebe Gott gemacht,

alles andere ist Menschenwerk.
(attributed to Leopold Kronecker, 1886)

We have 0; 1; :::2Ord. All these intuitive natural numbers are equal to 0 or successor
ordinals, i.e., not limit ordinals. We use this as the de�ning property of the natural numbers
within the ordinal numbers.

De�nition 142. n is a natural number i� n2Ord and 8m6n:Lim(m). Let
N= fnjn is a natural number g

be the class of natural numbers. We often use letters k; l; m; n as variables for natural
numbers.

Theorem 143.

a) N�Ord .

b) 02N and n2N!n+12N .

c) N is transitive.

d) N is an initial segment of Ord with respect to <.

Proof. a) and 02N hold trivially. Let n2N . Then 8m6n:Lim(m). This immediately
implies 8m6n+1 :Lim(m) and so n+12N .
c) Let x 2 n 2N . Then 8m 6 n:Lim(m). Since x � n we have 8m6 x:Lim(m). Then
x2N since x is also an ordinal.
d) is a reformulation of c). �

Theorem 144. N satis�es the schema of complete induction:

(A�N^ 02A^8n2A n+12A)!A=N

holds for all terms A .

Proof. Assume that A�N^ 02A^ 8n2A n+12A . Assume for a contradiction that
A=/ N . By foundation take an 2-minimal k 2N nA .
(1) k is a limit ordinal.
Proof . k is an ordinal since it is a natural number. k=/ 0 since 02A . Assume that k were
a successor ordinal of the form k= n+ 1 . n 2A by the minimality of k . By the closure
assumptions on A, n+12A and k 2A which contradicts the choice of k . qed(1)
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But k2N cannot be a limit ordinal, contradiction. �

Theorem 145. N is closed with respect to ordinal addition and ordinal multiplication:

m+n2N and m �n2N:

Proof. Fix m2N . We prove the closure properties by induction on n2N:
(1) m+n2N .
Proof . Obviously m+0=m2N . Now assume m+n2N . Then

m+(n+1)= (m+n)+ 12N:

So the property holds by complete induction. qed(1)
(2) m �N 2N .
Proof . Obviously m � 0= 02N . Now assume m �n2N . Using (1):

m � (n+1)=m �n+m2N: �

Recall the axioms of Peano arithmetic:

De�nition 146. The axiom system PA � LSAR of peano arithmetic consists of the
following sentences

¡ 8xx+1=/ 0

¡ 8x8y x+1= y+1!x= y

¡ 8xx+0=x

¡ 8x8y x+(y+1)= (x+ y)+ 1

¡ 8xx � 0= 0

¡ 8x8y x � (y+1)=x � y+x
¡ Schema of induction: for every formula '(x0; :::; xn¡1; xn)2LSAR:

8x0:::8xn¡1('(x0; :::; xn¡1; 0)^8xn('! '(x0; :::; xn¡1; xn+1))!8xn')

The preceding theorems can be interpreted to express that the class N of natural
numbers together with +�(!�!); ��(!�!);<�(!�!);0;1 is a model of Peano arithmetic.
Note, that the induction theorem 144 is in general considerably stronger than the induction
required in the Peano axioms, since the inductive formula may be any set theoretical
formula, not just a formula from the language of arithmetic.

N is an adequate formalization of arithmetic within set theory since N satis�es all
standard arithmetical axioms.

Exercise 23. Prove:

a) Addition and multiplication are commutative on N .

b) Addition and multiplication on N satisfy the usual monotonicity laws with respect to <.

23.2 Finite cardinals
We shall show that N is the class of �nite cardinals, which corresponds to the usual role
of natural numbers to determine the size of �nite sets.

Theorem 147. For all natural numbers n

a) card(n)=n;
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b) n2Cd .

Proof. a) By complete induction on n.
For n=0, ;: 0$ 0 and hence card(0)= 0 .
Assume that card(n)=n. We claim that card(n+1)=n+1. Obviously card(n+1)6

n+1 . Assume for a contradiction that m= card(n+1)<n+1 . Take f :m$n+1 . Let
f(i0)=n.
Case 1 : i0=m¡1. Then f � (m¡1): (m¡1)$n and card(n)6m¡1<n , contradiction.
Case 2 : i0<m¡ 1 . Then de�ne g: (m¡ 1)$n by

g(i)=
�
f(i) , if i=/ i0;
f(m¡ 1) , if i= i0 :

Hence card(n)6m¡ 1<n , contradiction.
b) follows immediately from a). �

23.3 Finite sets

De�nition 148. x is �nite if card(x)2N .

Theorem 149. Let a; b �nite, let x2V.
a) Every subset of a �nite set is �nite.

b) a[fxg, a[ b, a\ b, a� b, a n b, and P(a) are �nite. We have card(P(a))=2card(a).
c) If ai is �nite for i2 b then

S
i<b ai is �nite.

Proof. By induction. �

Finite sets can be distinguished by dependencies between injective and surjective maps.

Theorem 150. Let a be �nite. Then

a) 8f
�
f : a!!!!!!!!!!!!!!!!!!!!!!inj: a implies f :a!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !surj:

a
�

b) 8f
�
f : a!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !surj:

a implies f : a!!!!!!!!!!!!!!!!!!!!!!inj: a
�

Proof. By complete induction on card(a)2N .
card(a)= 0 : there is exactly on function ;: ;!; , and this is injective and surjective.
Assume that the theorem holds for all a with card(a)=n . �

Using the axiom of choice one can also show the converse.

23.4 Finite sequences

De�nition 151.

a) A sequence w: jw j!V is called �nite i� jw j<! .
b) A �nite sequence w: n! V may be denoted by its enumeration w0; :::; wn¡1 where

we write wi instead of w(i). One also writes w0:::wn¡1 instead of w0; :::; wn¡1 , in
particular if w is considered to be a word formed out of the symbols w0; :::; wn¡1 .

By this de�nition, this text has gone full circle, since we started our investigations with
�nite sequences of symbols:
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De�nition 152. Let S be a language. A word over S is a �nite sequence w=w0w1:::wn¡1
of symbols w0; :::; wn¡1 2 S0 [ S. The natural number n is the length of w, we also write
jwj=n.

The empty word is the unique sequence � with j�j=0. Let S� be the class of all words
over S.

Ouroboros (tail-eater), 10th century

Recall that formulas are certain �nite sequences. Sequents are �nite sequences of for-
mulas. Derivations in the sequent calculus are �nite sequences of sequents. This will allow
to do formal logic and ST itself within ST, leading to paradoxes and Gödel's incompleteness
theorems.

Note that we have developed set theory so far from the axioms of ST without assuming
the axiom of in�nity or the axiom of choice.

24 In�nity

Mathematics is the science of the in�nite.
(Herrmann Weyl,

Levels of In�nity, 1930)

Apart from its foundational role, set theory is mainly the study of in�nite sets. The
axiom of in�nity (Inf) postulates the existence of some in�nite set which will then spawn
a whole universe of in�nite sets:

9x (02 x^8u2x u+12x):

Theorem 153. In the axiom system ST, the axiom of in�nity is equivalent to N being a
set:

Inf$N2V :

Proof. If N2V then N obviously is a witness to the axiom of in�nity.
For the converse, take a set x such that 02x^8u2 x u+12x . A=x\N is a set by

separation. Then 02A^8n2A n+12A . By complete induction A=N: Hence N2V . �

Until further notice, we assume the axiom of in�nity in the form N2V .
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24.1 !

Except being the set of natural numbers, N will be an ordinal and a cardinal as well. We
introduce a constant symbol for N intended to emphasizes its role as an ordinal:

De�nition 154. Set !=N .

Note that ! is somewhat similar to the 1-symbol sometimes used for �in�nity�.

Theorem 155.

a) ! 2V.
b) (!; 0;+1) satisfy the second order Peano axiom, i.e.,

8x�! (02x^8n2 x n+12 x!x=!):

c) ! 2Ord.

d) ! is the smallest limit ordinal.

Proof.
d) By b), every element of ! is transitive and it su�ces to show that ! is transitive. Let

x= fnjn2! ^8m2n m2!g�!:

We show that the hypothesis of c) holds for x. 02x is trivial. Let u2 x. Then u+12!.
Let m2u+1. If m2u then m2! by the assumption that u2x. If m=u then m2x�!.
Hence u+12x and 8u2 x u+12x. By b), x=!. So 8n2!n2x , i.e.,

8n2!8m2n m2!:
e) Of course !=/ 0 . Assume for a contradiction that ! is a successor ordinal, say !=�+1 .
Then �2! . Since ! is closed under the +1-operation, !=�+12! . Contradiction. Every
ordinal smaller than ! is a natural number and not a limit ordinal. Hence ! is the smallest
limit ordinal. �

Theorem 156.

a) card(!)=! ;

b) ! 2Card .

Proof. Assume for a contradiction that n = card(!) < ! . Let f : n $ ! . De�ne g:
(n¡ 1)!! by

g(i)=
�
f(i), if f(i)< f(n¡ 1);
f(i)¡ 1; if f(i)> f(n¡ 1):

(1) g is injective.
Proof. Let i < j <n¡ 1.
Case 1. f(i); f(j)< f(n¡ 1). Then g(i)= f(i)=/ f(j)= g(j).
Case 2. f(i)< f(n¡ 1)< f(j). Then g(i)= f(i)< f(n¡ 1)6 f(j)¡ 1= g(j).
Case 3. f(j)< f(n¡ 1)< f(i). Then g(j)= f(j)< f(n¡ 1)6 f(i)¡ 1= g(i).
Case 4. f(n¡ 1)< f(i); f(j). Then g(i)= f(i)¡ 1=/ f(j)¡ 1= g(j). qed(1)
(2) g is surjective.
Proof . Let k 2!.
Case 1. k < f(n ¡ 1). By the bijectivity of f take i < n ¡ 1 such that f(i) = k . Then
g(i)= f(i)= k .
Case 2. k> f(n¡ 1). By the bijectivity of f take i <n¡ 1 such that f(i)= k+1 . Then
g(i)= f(i)¡ 1= k . qed(2)
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But this is a contradiction to the supposed minimality of n= card(!). �

24.2 Countable sets

De�nition 157.

a) x is in�nite if x is not �nite.

b) x is countable if card(x)6! .
c) x is countably in�nite if card(x)=! .

d) x is uncountable if x is not countable.

Lemma 158.

a) card(!+1)=! .

b) card(!+!)=! .

c) card(!�!)=! .

Proof. a) De�ne fa:!$!+1 by

f(n)=
�
! , if n=0
n¡ 1 , else

b) De�ne fb:!$!+! by

f(n)=
�
m , if n=2�m
!+m , if n=2�m+1

c) De�ne fc:!$!�! by

f(n)=!�k+ l, if n=2k�(2�l+1)¡ 1
�

We have the following closure properties for countable sets:

Theorem 159.

a) If z �! then z is countable.

b) If there is an injection from y into ! then y is countable.

c) Every subset of a countable set is countable

d) If a; b are countable then a[fxg, a[ b, a\ b, a� b, a n b are countable

Proof. a) This follows from exercise 40.
b) Let f : y! ! be injective. Then f [y] � ! . By a), f [y] is countable. Then y � f [y] is
countable.
c) Let a� b where b is countable. Then there is an injective f : b!! . f � a: a!! is also
injective, and so a is countable.
d) Countability will be shown by exhibiting injections into countable sets. The case \
and n are trivial. For the other cases let fa:a!! and fb: b!! be injective. Then de�ne
injective maps:

f0: a[fxg!!; f0(u)=
�
fa(u)+1, if u2 a
0, else

f1: a[ b!!; f1(u)=
�
2 � fa(u)+1, if u2 a
2 � fb(u), else
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f2: a� b!!; f2(u; v)=2fa(u)�(2�fb(v)+1) �

Remark 160. We cannot prove the following standard property within ST + Inf: if an
is countable for n < ! then

S
n<! an is countable. Indeed one can show in axiomatic set

theory, that the property is not implied by ST. We shall later prove the property in the
stronger theory ZFC, using the axiom of choice.

24.3 !-Sequences
Sequences of length or order-type ! are ubiquitous in mathematical analysis. There they
are called (in�nite) sequences. !-sequences also come up in the context of in�nite series.

De�nition 161. An (!-)sequence w:!!V may be denoted by w0; w1; ::: where w0; w1; :::
suggests a de�nition of w .

An analysis statement like

lim
n!1

1
n
=0

is a statement about the !-sequence 1

1
;
1

2
; ::: .

X
n=0

1
1
n!
= e

is a limit statement about the !-sequence

w0; w1; w2; :::=
1
1
;
1
1
+ 1
1
;
1
1
+ 1
1
+ 1
2
; :::

of partial sums. The factorial n! is de�ned recursively by

0! = 1;
(n+1)! = n! � (n+1):

(One could extend this continuously to �! for all ordinals �.) The partial sums wn are
de�ned recursively by

w0 = 1

wn+1 = wn+
1

(n+1)!

Note that the recursions completely formalize the vague :::-notations above.

24.4 Uncountable sets
Recall Cantor's theorem that x�P(x). Thus P(!) =P(N) is the ��rst� uncountable set
that we encounter. The determination of its size is a central problem in axiomatic set
theory, also because P(!) is equipollent to the setR of real numbers that we shall construct
soon. Cantor spent a lot of e�ort to prove that the �continuum� R represents the smallest
uncountable cardinal. This property is Cantor's continuum hypothesis. With the methods
of axiomatic set theory one can prove that the continuum hypothesis cannot be decided
(= proved or disproved) from the axioms of ZF or ZF with the axiom of choice if these
theories are consistent.
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25 The Axiom of Choice

Natural numbers n2N are used to enumerate �nite sets a as

a= fa0; a1; :::; an¡1g:

Assuming the axiom of choice, one can use ordinals to enumerate any set a as

a= fai j i<�g:

De�nition 162. The Axiom of Choice, AC is the statement

8x(;2/ x^8u; v 2x(u=/ v!u\ v= ;)!9z8u2 x9wu\ z= fwg):

The set z �chooses� one element out of every element of x .

:::

x

u

w

z

It seems intuitively obvious that such choices are possible. On the other hand one can
see that the axiom of choice has unintuitive, paradoxical consequences.

Theorem 163. The following statements are equivalent:

a) AC ;

b) 8x9g (g is a function with domain x^8u2x (u=/ ;! g(u)2u)); such a function g
is called a choice function for x ;

c) (Zermelo's Wellordering Theorem) 8x9�9ff :�$x .

d) card(x)2Ord for every set x .

Proof. a)! b) Assume AC. Let x be a set. We may assume that every element of x is
nonempty. The class

x0= ffug�uju2 xg
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is the image of x under the set valued map u 7! fug � u, and thus a set by replacement.
The elements fug�u of x0 are nonempty and pairwise disjoint. By AC, take a choice set z
for x0. De�ne a choice function g:x!V by letting g(u) be the unique element of u such that

(fug�u)\ z= f(u; g(u))g:

b)! c) Assume b). Let x be a set and let g:P(x) n f;g!V be a choice function for P(x).
De�ne a function F :Ord!x[fxg by ordinal recursion such that

F (�)=
�
g(x nF [�]), if x nF [�]=/ ;;
x, if x nF [�]= ;:

At �time� �, the function F chooses an element F (�)2x which has not been chosen before.
If all elements of x have been chosen, this is signaled by F by the value x which is not an
element of x.
(1) Let �< � and F (�)=/ x . Then F (�); F (�)2 x and F (�)=/ F (�).
Proof . F (�) =/ x implies that x n F [�] =/ ; and hence F (�) = g(x n F [�]) 2 x n F [�].
Since � 2 �, x n F [�] =/ ; and F (�) = g(x n F [�]) 2 x n F [�]. F (�) =/ F (�) follows from
F (�)2 x nF [�]. qed(1)
(2) There is �2Ord such that F (�)=x .
Proof . Assume not. Then by (1), F : Ord! x is injective. Hence F¡1 is a function and
Ord=F¡1[x]. By replacement, Ord is a set, but this is a contradiction. qed(2)

By (2) let � be minimal such that F (�) = x . Let f = F ��:�! x . By the de�nition
of F , x nF [�]=; , i.e., F [�]=x and f is surjective. By (1), f is also injective, i.e., f :�$x .

The equivalence c)$ d) is trivial.
c)!a) Assume c). Let the set x consist of nonempty pairwise disjoint elements. Apply

c) to
S
x . Take an ordinal � and a function f :�!

S
x . De�ne a choice set z for x by setting

z= ff(�)j9u2x (f(�)2 u^8� < �f(�)2/ u)g:

So z chooses for every u2 x that f(�)2 u with � minimal. �

Let us assume AC until further notice. Then Cantor's two approaches to cardinality
agree.

Theorem 164.

a) x4 y$ card(x)6 card(y).

b) x� y$ card(x)= card(y).

Proof. a) Let x 4 y and let f : x ! y be injective. Further let fx: card(x) $ x and
fy: card(y) $ y . Then fy

¡1 � f � fx: card(x)! card(y) is injective. Let z = fy
¡1 � f �

fx[card(x)]� card(y). By exercise 40(1), card(x)= card(z)6 card(y).
Conversely, let card(x)6 card(y) with fx: card(x)$ x and fy: card(y)$ y as above.

Then fy � fx¡1:x! y is injective and x4 y .
b) is trivial. �

As an immediate corollary we get the Cantor�Schröder�Bernstein theorem with AC.
Actually the theorem could also be proven in ZF without the axiom of choice.

Theorem 165. (ZFC) Let a4 b and b4 a . Then a� b.
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Theorem 166. Let F :x!V. Then there exists a choice function f :x!V for F , i.e.,

8u2x (F (u)=/ ;! f(u)2F (u)):

Proof. Let g:fF (u)ju2xg!V be a choice function for the set fF (u)ju2xg. The theorem
then holds with f :x!V de�ned by

f(u)= g(F (u)): �

Theorem 167. If an is countable for n<! then
S
n<! an is countable.

Proof. By the axiom of choice �choose� a sequence (hnjn < !) of injections hn: an! ! :
De�ne H :!!V by

H(n)= fhjh: an!! is injectiveg:

By the previous theorem let h:!!V be a choice function for H . Then h=(hnjn<!) is
as required.

De�ne an injection

f :
[
n<!

an!! ; f(u)= 2n�(2�hn(u)+1), where n is minimal such that u2 an :

�

Zorn's Lemma is an important existence principle which is also equivalent to AC.

De�nition 168. Let (P ;6) be a partial order.

a) X � P is a chain in (P ; 6) if (X; 6) is a linear order where (X; 6) is a short
notation for the structure (X;6\X2).

b) An element p2P is an upper bound for X �P i� 8x2Xx6 p .
c) (P ;6) is inductive i� every chain in (P ;6) possesses an upper bound.

d) An element p2P is a maximal element of (P ;6) i� 8q 2P (q> p!q= p).

Theorem 169. The axiom of choice is equivalent to the following principle, called Zorn's
Lemma: every inductive partial order (P ;6)2V possesses a maximal element.

Proof. Assume AC and let (P ;6)2V be an inductive partial order. Let g:P(P )nf;g!V
be a choice function for P(P ) n f;g. De�ne a function F : Ord ! P [ fP g by ordinal
recursion; if there is an upper bound for F [�] which is not an element of F [�] let

F (�)= g(fp2P nF [�] j p is an upper bound for F [�]g);
otherwise set

F (�)=P :

At �time� �, the function F chooses a strict upper bound of F [�] if possible. If this is not
possible, this is signaled by F by the value P .

The de�nition of F implies immediately:
(1) Let �< � and F (�)=/ P . Then F (�)<F (�).
(2) There is �2Ord such that F (�)=P .
Proof . Assume not. Then by (1), F : Ord ! P 2 V is injective, and we get the same
contradiction as in the proof of Theorem 163. qed(2)
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By (2) let � be minimal such that F (�)=P . By (1), F [�] is a chain in (P ;6). Since
the partial order is inductive, take an upper bound p of F [�]. We claim that p is a maximal
element of (P ; 6). Assume not and let q 2 P , q > p. Then q is a strict upper bound of
F [�] and q2/ F [�]. But then the de�nition of F yields F (�)=/ P , contradiction.

For the converse assume Zorn's Lemma and consider a set x consisting of nonempty
pairwise disjoint elements. De�ne the set of �partial choice sets� which have empty or
singleton intersection with every element of x :

P =
�
z�

[
x j 8u2x(u\ z= ;_9wu\ z= fwg)

	
:

P is partially ordered by � . If X is a chain in (X; �) then
S
X is an upper bound for

X. Hence (X;�) is inductive.
By Zorn's Lemma let z be a maximal element of (X;�). We claim that z is a �total�

choice set for x :
(3) 8u2x9wu\ z= fwg.
Proof . If not, take u2x such that u\ z=;. Take w2u and let z 0= z[fwg. Then z 02P ,
contrary to the the �-maximality of z. �

Theorem 170. The axiom of choice is equivalent to the following principle, called Haus-
dor�'s Maximality Principle: every partial order (P ;6)2V possesses an �-maximal chain
X �P, i.e., X is a chain, and whenever X 0�P is a chain with X 0�X then X 0=X .

Proof. It is straightforward to show the equivalence with Zorn's Lemma. See also: Haus-
dor�, Grundzüge der Mengenlehre, p. 141: Wir haben damit für eine teilweise geordnete
Menge A die Existenz gröÿter geordneter Teilmengen B bewiesen; natürlich kann es deren
verschiedene geben. �

De�nition 171. The axiom system ZFC consists of the ZF-axioms together with the axiom
of choice AC.

The system ZFC is the generally accepted foundation of mathematics. It provides
adequate formalizations of all mathematical notions. We have seen this for the basic notions
of relations, functions, (ordinal) numbers, cardinality, induction, recursion. Further notions
like number systems, algebraic structures, etc. are available (We shall do number systems
up to the real and complex numbers in the next chapter).

The ZF axioms have good motivations stemming from our intuitions about (small)
�nite sets. The axiom of choice is more controversial. AC has desirable consequences
like Zorn's Lemma and its applications, but on the other hand AC has some paradoxical
and problematic consequences like the existence of Lebesgue non-measurable sets of real
numbers.

The status of AC within set theory can be compared to the parallel axiom in geometry.
In (non-) euclidean geometry one can show that if the axioms without the parallel axiom
are consistent then the axioms together with the parralel axiom are consistent. K. Gödel
has shown in another of his groundbreaking results:

Theorem 172. If ZF is consistent then ZFC is consistent.

This meta-result about set theory belongs to the area of axiomatic set theory which
studies the multitude of possible models of the ZF-axioms. Gödel's theorem is proved
by de�ning a substructure LM for any model M of ZF, so that LM � ZFC . The proof is
sophisticated and combines set theory with logical methods. It would typically be a main
topic of an introductory course on �Models of Set Theory�.
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26 Number systems
To substantiate our claim that set theory is a/the foundation of mathematics, we have to
model the standard number systems N;Z;Q;R;C in set theory. These systems are SAR-
structures where SAR= f+; �; 0; 1g is the language of arithmetic.

Theorem 173. There are SAR-structures

N�Z�Q�R�C=(C;+; �; 0; 1)

with the following properties:

a) C is a �eld; for a; b 2C write a¡ b for the unique element z such that a= b+ z ;
for a; b2C with b=/ 0 write a

b
for the unique element z such that a= b�z ;

b) there is a constant i, the imaginary unit, such that i�i+1=0 and

C= fx+ i�y jx; y 2Rg;

c) there is a strict linear order < on R such that (R;<;+�R2; � �R2;0;1) is an ordered
�eld;

d) (R; <) is complete, i.e., bounded subsets of R possess suprema:

8X �R (X=/ ;^9b2R8x2Xx6 b ¡! 9b2R ((8x2Xx6 b)^:9b0<b8x2Xx6
b 0))

e) Q is dense in (R; <):

8r; s2R (r < s¡!9a; b; c2Q a<r < b<s< c);

f ) Q is a �eld; moreover

Q=
n
a
b
ja2Z; b2Zn f0g

o
;

g) Z is a ring with unit; moreover

Z= fa¡ b ja; b2Ng;

h) (N; +1; 0) satis�es the second-order Peano axioms, i.e., the successor function
n 7!n+1 is injective, 0 is not in the image of the successor function, and

8X �N (02X ^8n2Xn+12X ¡! X =N):

The existence proof will be carried out by constructing the systemsN;Z; ::: successively
in the subsections below. There are many degrees of freedom in the construction. Rational
numbers, e.g., can be de�ned as equivalence classes of fractions, or as cancelled fractions.
Nevertheless one can show that number systems satisfying the theorem are essentially
unique:

Theorem 174. If SAR-structures

N0�Z0�Q0�R0�C0=(C0;+0; �0; 00; 10)

also satisfy properties a)-h) of the preceding theorem, then there is a uniquely determined
isomorphism

�: (C;+; �; 0; 1)=� (C0;+0; �0; 00; 10)

� �Q: (Q;<;+; �; 0; 1)=� (Q0; <0;+0; �0; 00; 10);
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such that

a) � �N: (N;+1; 0)=� (N0;+010; 00);

b) � �Z: (Z;+; �; 0; 1)=� (Z0;+0; �0; 00; 10);
c) � �Q: (Q;<;+; �; 0; 1)=� (Q0; <0;+0; �0; 00; 10);
d) � �R: (R; <;+; �; 0; 1)=� (R0; <0;+0; �0; 00; 10).

The theorem can be proved by successively constructing � �N , � �Z, . . . .
So we can usually agree that we work with the natural numbers N , the integers Z , the

rationals Q , the reals R and the complex numbers C . We can understand the concrete
construction of the number systems as justi�cation for augmenting the language of set
theory by constants N;Z; ::: and axiomatically postulating properties a)-h).

We can picture the number systems within the standard complex plane, possibly with
an identi�cation of N and !.

C

0 1

i

::: :::
N

Q�R
Z

z=x+ iy

x

y

26.1 Natural numbers

De�nition 175. The structure

N: =(!;+�(!�!); ��(!�!); <�(!�!); 0; 1)

is called the structure of natural numbers, or arithmetic. We usually denote this structure
by

N: =(!;+; �; <; 0; 1):

N is an adequate formalization of arithmetic within set theory since N satis�es all
standard arithmetical axioms. N satis�es h) and i) of Theorem 173.

Exercise 24. Prove:

a) Addition and multiplication are commutative on ! .

b) Addition and multiplication satisfy the usual monotonicity laws with respect to <.
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26.2 Integers
We shall �rst de�ne a structure Z0 which will be isomorphic to the structure Z of integers.
N can be canonically embedded into Z0 ; we obtain Z by replacing the image of N under
the embedding by N itself

De�nition 176. We de�ne the structure

Z0 := (Z0;+Z0; �Z0; <Z0; 0Z0; 1Z0)

of integers as follows:

a) De�ne an equivalence relation � on N�N by

(a; b)� (a0; b0) i� a+ b 0= a0+ b:

b) Let a¡ b:=[(a; b)]� be the equivalence class of (a; b) in �. Note that every a¡ b is
a set.

c) Let Z0:=fa¡ bja2N^ b2Ng be the set of integers.

d) De�ne the addition +Z0:Z0�Z0!Z0 by

(a¡ b)+Z0 (a0¡ b 0) := (a+ a0)¡ (b+ b 0):

e) De�ne the multiplication �Z0:Z0�Z0!Z0 by

(a¡ b) �Z0 (a0¡ b 0) := (a � a0+ b � b 0)¡ (a � b 0+ a0 � b):

f ) De�ne the strict linear order <Z0 on Z0 by

(a¡ b)<Z0 (a0¡ b0) i� a+ b 0<a0+ b:

g) Let 0Z0: =0¡ 0 and 1Z0: =1¡ 0.

Exercise 25. Check that the above de�nitions are sound , i.e., that they do not depend on the choice
of representatives of equivalence classes.

Exercise 26. Check that Z0 satis�es (a su�cient number) of the standard axioms for rings.

De�ne an injective map e:N!Z0 by

n 7!n¡ 0:
The embedding e is a homomorphism:

a) e(0)= 0¡ 0=0Z0 and e(1)= 1¡ 0=1Z0;

b) e(m+n)= (m+n)¡ 0= (m+n)¡ (0+ 0)= (m¡ 0)+Z0 (n¡ 0)= e(m)+Z0 e(n);

c) e(m � n) = (m � n) ¡ 0 = (m � n + 0 � 0) ¡ (m � 0 + n � 0) = (m ¡ 0) �Z0 (n ¡ 0) =
e(m) �Z0 e(n);

d) m<n$m+0<n+0$ (m¡ 0)<Z0 (n¡ 0)$e(m)<Z0 e(n).

Hence e:N!Z0 is an embedding.
We prove a general theorem that allows to turn an embedded structure into a substruc-

ture:

Theorem 177. Let A;B0 be S-structures and let h:A ,!B0 be an embedding. Then there
is an S-structure B and an isomorphism �:B0=�B such that A�B and

� �h= idA :
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Proof. Note that B0�fAg is disjoint from A . Let B=(B0nh[A])�fAg[A be a �disjoint
union� of B0 nh[A] and A . De�ne a map �:B0!B by

�(b)=

(
(b; A), if b2B0 nh[A]
h¡1(b), if b2h[A]

Let B be the S-structure with domain B which is induced by the isomorphism � : for every
n-ary relation symbol R2S and b0; :::; bn¡12B de�ne

RB(b0; :::; bn¡1) i� RB0(�¡1(b0); :::; �¡1(bn¡1));

for every n-ary function symbol f 2S and b0; :::; bn¡12B de�ne

fB(b0; :::; bn¡1)= �(fB0(�¡1(b0); :::; �¡1(bn¡1))):

By de�nition, �:B0=�B .
��h= idA since for all a2A : �(h(a))=h¡1(h(a))=a . idA is an injective homomorphism

since it is the composition of two homomorphisms. Hence A is a substructure of B . �

By the theorem we can �nally choose the structure

Z=(Z;+Z; �Z;<Z; 0Z; 1Z)

of integers, isomorphic to Z0 by �:Z0=�Z with � � e:N�Z . We can also write +; �;<;0; 1
instead of +Z; �Z; <Z; 0Z; 1Z since the relations and functions of Z extend those of N . So
we have extended the number system N to the number system Z .

One can check straightforwardly that Z is a ring with unit. Let us show that

Z= fa¡ b ja; b2Ng:

Consider z2Z . Then �¡1(z)2Z0 . Take a; b2N such that �¡1(z)=a¡ b , where the right-
hand side is a formal di�erence as used in the de�nition of Z0 . In Z0 ,

e(b)+Z0 (a¡ b)= (b¡ 0)+Z0 (a¡ b)= (a+ b)¡ (b)= (a¡ 0)= e(a);

so that a ¡ b is the di�erence of e(a) and e(b) in Z . Applying the isomorphism � ,
z=�(a¡ b) is the di�erence of � � e(a)= a and � � e(b)= b in Z . Thus z= a¡ b in Z .

So Z satis�es Theorem 162 g).

26.3 Rational numbers
As we constructed Z from formal di�erences a ¡ b of natural numbers, we shall now
construct the rational numbers from formal quotients a

b
of integers.

De�nition 178. De�ne the structure

Q0 := (Q0;+Q0; �Q0;<Q0; 0Q0; 1Q0)

as follows:

a) De�ne an equivalence relation w on Z� (Zn f0g) by

(a; b)w (a0; b 0) i� a � b 0= a0 � b:

b) Let a

b
: =[(a; b)]' be the equivalence class of (a; b) in '. Note that a

b
is a set.

c) Let Q0:=fab ja2Z^ b2 (Z n f0g)g.
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d) De�ne the addition +Q0:Q0�Q0!Q0 by

a
b
+Q0

a0

b 0
:= a � b0+ a0 � b

b � b 0 :

e) De�ne the multiplication �Q0:Q0
+�Q0

+!Q0
+ by

a
b
�Q0

a0

b 0
:= a �a0

b � b 0 :

f ) De�ne the strict linear order <Q0 on Q0 by

a
b
<Q0

a0

b 0
i� a � b 0<a0 � b:

g) Let 0Q0: =0

1
and 1Q0: =1

1
.

Again one can check the soundness of the de�nitions and the well-known laws of
standard rational numbers. Also one can canonically embed Z into Q0 by

a 7! a
1
:

Again by theorem 165 we can now choose the structure

Q=(Q;+; �; <; 0; 1)

of rational numbers to be isomorphic to Q0 so that Q extends the number system Z .

26.4 Real numbers

De�nition 179. r �Q+= fp2Qj p> 0g is a positive real number if

a) 8p2 r8q 2Q+(q <Qp!q 2 r), i.e., r is an initial segment of (Q+; <Q);

b) 8p2 r9q 2 r p<Qq , i.e., r is right-open in (Q+; <Q);

c) 02 r=/ Q+, i.e., r is nonempty and bounded in (Q+;<Q).

De�nition 180. We de�ne the structure

R+ := (R+;+R; �R;<R; 1R)

of positive real numbers as follows:

a) Let R+ be the set of positive reals.

b) De�ne the real addition +R:R+�R+!R+ by

r+Rr 0= fp+Qp0jp2 r^ p02 r 0g:

c) De�ne the real multiplication �R:R+�R+!R+ by

r �Rr 0= fp �Qp0jp2 r^ p02 r 0g:

d) De�ne the strict linear order <R on R+ by

r <Rr 0 i� r� r 0^ r=/ r 0:
e) Let 1R: =fp2Q0

+jq <Q1g.

We justify some details of the de�nition.
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Lemma 181.

a) R+2V.
b) If r; r 02R+ then r+Rr 0, r �Rr 02R+.

c) <R is a strict linear order on R+.

Proof. a) If r 2R+ then r�Q0
+ and r 2P(Q0

+). Thus R+�P(Q0
+), and R+ is a set by

the power set axiom and separation.
b) Let r; r 02R+. We show that

r �Rr 0= fp �Qp0jp2 r^ p02 r 0g2R+:

Obviously r �Rr 0�Q0
+ is a non-empty bounded initial segment of (Q0

+; <Q).

Consider p2 r �Rr 0, q2Q0
+, q <Qp . Let p= a

b
�Q a0

b 0
where a

b
2 r and a0

b 0
2 r 0. Let q= c

d
.

Then c

d
= c � b 0

d � a0 �
Q a0

b 0
, where

c � b 0
d � a0 = q �Q b 0

a0
<Qp �Q b 0

a0
= a
b
�Q a0

b 0
�Q b 0

a0
= a
b
2 r :

Hence c � b 0
d � a0 2 r and

c
d
= c � b0
d � a0 �

Q a0

b0
2 r �Rr 0:

Similarly one can show that r �Rr 0 is open on the right-hand side.
c) The transitivity of <R follows from the transitivity of the relation $. To show that <R

is connex, consider r; r 02R+, r=/ r 0. Then r and r 0 are di�erent subsets of Q0
+. Without

loss of generality we may assume that there is some p2 r 0 n r . We show that then r <Rr 0,
i.e., r $ r 0. Consider q 2 r . Since p2/ r we have p �Q q and q6Q p . Since r 0 is an initial
segment of Q0

+, q 2 r 0. �

Exercise 27. Show that (R+; �R; 1R) is a multiplicative group.

We can now construct the complete real line R from R+ just like we constructed Z
from N . Details are left to the reader. We can also proceed to de�ne the structure C of
complex numbers from R .

Exercise 28. Formalize the structure C of complex numbers such that R�C .

27 The Alefs

We assume the theory ZFC for our considerations of cardinalities.

Theorem 182. 8�9�2Card�>�. Hence Card is a proper class of ordinals.

Proof. Let �>!. Then �=card(P(�))>card(�). And �>� since otherwise card(P(�))6
� and card(card(P(�)))6 card(�). �

De�nition 183. For any ordinal � let �+ be the smallest cardinal >� .

Theorem 184. Let X �Cd be a set. Then
S
X 2Cd.

Proof. Set � =
S
X. � is an ordinal. Assume that card(�) < �. Take � 2 X such that

card(�) < �. Then � 6 � and card(�) 6 card(�) < �. But card(�) = � because � is a
cardinal. �
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This allows the following

De�nition 185. De�ne the alef sequence

(@�j�2Ord)

recursively by

@0 = !

@�+1 = @�+

@� =
[
�<�

@� for limit ordinals �

Obviously

Card= f@�j�2Ordg
is the class of all cardinals.

Exercise 29. There are cardinals � such that �=@k .

28 Cardinal Arithmetic
For disjoint �nite sets a and b natural addition and multiplication satis�es

card(a[ b)= card(a)+ card(b) and card(a� b)= card(a) � card(b):

This motivates the following extension of natural arithmetic to all cardinals.

De�nition 186. Let �; � �nite or in�nite cardinals. Then let

a) �+ �= card(a [ b), where a; b are disjoint sets with �= card(a) and �= card(b);
�+� is the (cardinal) sum of � and � .

b) � ��= card(���); � �� is the (cardinal) product of � and � .

c) ��= card(��); �� is the (cardinal) power of � and � .

Note that we are using the same notations as for ordinal arithmetic. It will usually be
clear from the context whether ordinal or cardinal operations are intended.

The �arithmetic� properties of certain set operations yield usual arithmetic laws for
cardinal arithmetic.

Lemma 187.

a) Cardinal addition is associative and commutative with neutral element 0.

b) Cardinal multiplication is associative and commutative with neutral element 1.

c) � � (�+ �)=� ��+� � � .

d) �0=1 , 0�=0 for �=/ 0, �1=�, 1�=1, ��+�=�� ��� , ����=(��)�.

Proof. c) Let a; b be disjoint sets with �= card(a) and �= card(b). Then

� � (�+ �) = card(�� (a[ b))
= card((�� a)[ (�� b))
= card((�� a))+ card((�� b))
= � ��+� � �;
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using that �� (a[ b)= (�� a)[ (�� b) and that �� a and �� b are disjoint.
d)

�0= card(0�)= card(f;g)= card(1)=1 :

In case �=/ 0 we have that �0= ff jf :�!;g= ; and thus

0�= card(�0)= card(;)=0:

For �1=� consider the map �$ 1� given by � 7! f(0; �)g.
For 1�=1 observe that �1= ff(�; 0)j�<�gg is a singleton set.

Let a; b be disjoint sets with �= card(a) and �= card(b). Then

��+� = card(a[b�)
= card((a�)� (b�))
= card(a�) � card(b�)
= �� ��� ;

using that a[b�� (a�)� (b�) via the map f 7! (f � a; f � b).
Finally,

���� = card(����)
= card(�(��))
= card(��)�

= (��)� ;

using that ����� �(��) via the map

f 7! (f� j� < �)

where f�:�!� with f�(�)= f(� ; �), �

29 Further Cardinal Arithmetic
We determine the values of cardinal addition and multiplication for in�nite cardinals.

Theorem 188.

a) If �2Card then � ��=� .
b) If �2Card and �2Cd, �=/ 0 then � ��=max (�; �) .

c) If �2Card and �2Cd then �+�=max (�; �) .

Proof. a) � ��= card(���)=� , by the properties of the Gödel pairing function.
b) The map i 7! (i; 0) injects � into � � � , and the map j 7! (0; j) injects � into � � � .
Hence �; �6� �� . Thus

max (�; �)6� ��6max (�; �) �max (�; �) ================================ =
(a)

max(�; �):

c) Obviously ��f0g�� and ��f1g�� . The inclusion

(f0g��)[ (f1g��)�max (�; �)�max (�; �)

implies

max (�; �)6�+�6max (�; �) �max (�; �) ================================ =
(a)

max(�; �): �
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For in�nite cardinal exponentiation the situation is very di�erent. Only a few values
can be determined explicitely.

Lemma 189. For �2Card and 16n<! we have �n=� .

Proof. By complete induction. �1=� was proved before. And

�n+1=(�n) ��1=� ��=�: �

The �next� exponential value 2@0 is however very undetermined. It is possible, in a sense
to be made precise later, that 2@0 is any successor cardinal, like e.g. @13 .

Cantor's continuum hypothesis is equivalent to the cardinal arithmetic statement

2@0=@1 :

30 Löwenheim-Skolem theorems
We start to apply settheoretic methods to logic. For this we assume that ZFC set theory
is part of the �metatheory� in which we study logic. Recall that the basic logical notions
were introduced in terms of set theory: a language is a class of symbols, a structure consists
of an underlying set together with other components.

De�nition 190. The cardinality card(A) of an S-structure A is de�ned as the cardinality
of the underlying set jAj. Correspondingly A is �nite, in�nite, countable, or uncountable,
resp., i� the underlying set jAj is �nite, in�nite, countable, or uncountable, resp.

The Löwenheim-Skolem theorems study possible cardinalities of structures.
The set

S0= f�;:;!;?; 8; (; )g[ fvnjn2Ng

of basic logical symbol has cardinality @0 . Recall:

De�nition 191. A word over a language S is a �nite sequence w=w0w1:::wn¡1 of symbols
w0; :::; wn¡12S0[S. S� is the class of all words over S.

For the rest of the section, let all languages be sets. Then

Lemma 192. card(S�)= card(S)+@0 .

Proof. (>) w 7! (w) is an injection from S in S�; n 7! vn is an injection from N into S�.
Hence

card(S)+@0=max (card(S);@0)6 card(S�):

(6) S�= !(S [S0)=
S
n<!

n(S [S0).
(1) card(n(S [S0))= card(S)+S0 for 16n<! .
Proof . By complete induction on n . For n=1,

1(S [S0)�S [S0� card(S)+ card(S0)= card(S)+@0 :

For the induction step,

n+1(S [S0)�n (S [S0)� (S [S0)� (card(S)+@0) � (card(S)+@0)= card(S)+@0 :

qed(1)
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Then

card(S�)= card

 [
n<!

n(S [S0)
!
6@0� (card(S)+@0)= card(S)+@0 :

�

Theorem 193. Let S be a language. Then

card(LS)= card(S)+@0> card(TS)>@0 :

Proof. (>) To every symbol in S [ S0 we can assign a formula in LS such that the
assignment is injective.

(6) holds, because LS �S�. �

We shall now revisit the Henkin model existence construction to determine the cardin-
alities of various parts of the construction. The main point from the cardinality viewpoint
are the extensions of the language to obtain �witnesses�:

Theorem 194. Let S be a language and let ��LS be consistent. Then there is a language
S! and �!�LS! such that

a) S! extends S by constant symbols, i.e., S�S! and if s2S! nS then s is a constant
symbol;

b) �!��;
c) �! is consistent;

d) �! contains witnesses;

e) card(LS
!
)= card(�!)= card(LS).

Note that the original version of e) said: if LS is countable then so are LS
!
and �!.

Proof. We only have to take card of e) along the original construction.
We de�ned language extensions S 7!S+ by

S+=S [fc j 2LSg

and extensions � 7!�+ of sets of formulas by

�+=�[f:8x'!:'c8x'
x
j8x'2LSg:

The cardinality of such unions is de�ned by the greatest summand, hence:

card(S+)= card(�+)= card(LS):

We then iterated the +-operation through the integers:

�0 = �
S0 = S

Sn+1 = (Sn)+

�n+1 = (�n)+

S! =
[
n2N

Sn

�! =
[
n2N

�n :
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By complete induction over N we can show:

card(Sn+1)= card(�n+1)= card(LS):
Finally

card(LS
!
)= card(S!)=@0 � card(LS)= card(LS)

and

card(�!)= card(LS) �

In the Henkin construction, �! is further extended to a Henkin set �� � LS
!
without

further extending the language. So one gets:

Theorem 195. Let S be a language and let ��LS be consistent. Then there is a language
S� and ���LS� such that

a) S��S is an extension of S by constant symbols;

b) ���� is a Henkin set;

c) card(LS
�
)= card(��)= card(LS).

The corresponding term model T �� is build from equivalence sets of LS
�
-terms. Hence

card(T ��)6 card(LS):
In the countable case we get:

Theorem 196. (Downward Löwenheim-Skolem theorem) Let �� LS be a countable
consistent set of formulas. Then � possesses a model M= (A; �)��, A= (A; :::) with a
countable underlying set A.

Considering the countable theories ZF or ZFC yields:

Theorem 197. (The Skolem paradoxon) Assume that ZF or ZFC are consistent. Then
there exists a countable model of ZF or ZFC respectively.

This is considered a paradox since the theories ZF and ZFC imply the existence of very
high cardinals @� . Nevertheless such high cardinalities can be realized inside a model, that
from the �outside� is countable. Some mathematicians have critisized the theories ZF and
ZFC because they do not uniquely determine �the� intuitive model of set theory which
should be a proper class and not countable.

The word �downward� emphasises the existence of models of �small� cardinality. We
now consider an �upward� Löwenheim-Skolem theorem.

Theorem 198. (Upward Löwenheim-Skolem theorem) Let ��LS have an in�nite S-
model. Then � has a model of cardinality � for every cardinal �> card(LS).

Proof. Let M be an in�nite model of �. Choose a sequence (c� j�<�) of pairwise distinct
constant symbols which do not occur in S. Let S 0=S [fc� j�<�g be the extension of S
by the new constant symbols. Set

�0=�[f:c�� c� j�< � <�g:
(1) �0 has a model.
Proof . It su�ces to show that every �nite �0��0 has a model. Let �0��0 be �nite. Take
a �nite set X0�� such that

�0��[f:c�� c� j�; � 2X0; �< �g:
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Since jMj is in�nite we can choose an injective sequence (a�j� 2 X0) of elements of jMj
such that �=/ � implies a�=/ a� . For �2 � nX0 choose a�2 jMj arbitrarily. Then in the
extended model obtained,

M0��0 :
qed(1)

card(LS
0
)= card(S 0)+@0= card(S)+�+@0=�:

Let M0��0 with card(M0)6 card(LS
0
)=� . The map

i:�!jM0j; � 7! c�
M0

is injective. Thus card(M0)>� .
Let M00 be the reduct of M0 to the language S. Then M00�� and card(M00)=� . �

Theorem 199. Assume that � � LS has arbitrarily large �nite models. Then � has an
in�nite model.

Proof. For n2N de�ne the sentence

'>n=9v0; :::; vn¡1
^

i<j<n

:vi� vj ;

where the big conjunction is de�ned by^
i<j<n

 ij= 0;1^ :::^  0;n¡1^  1;2^ :::^  1;n¡1^ :::^  n¡1;n¡1 :

For any model M

M� '>n i� A has at least n elements.

Now set

�0=�[f'>n jn2Ng:
(1) �0 has a model.
Proof . By the compactness theorem 63b it su�ces to show that every �nite �0�� has a
model. Let �0�� be �nite. Take n02N such that

�0��[f'>n jn6n0g:

By assumption � has a model with at least n0 elements. Thus �[f'>n jn6n0g and �0
have a model. qed(1)

Let M��0. Then M is an in�nite model of �. �

Theorem 200. Let S be a language.

a) The class of all �nite S-structures is not axiomatizable.

b) The class of all in�nite S-structures is axiomatizable but not �nitely axiomatizable.

Proof. a) is immediate by Theorem 199.
b) The class of in�nite S-structures is axiomatized by

�= f'>n jn2Ng:

If that class were �nitely axiomatizable then the complementary class of �nite S-structures
would also be (�nitely) axiomatizable, contradicting a). �
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