
Hauptseminar Mathematische Logik, 1. Vortrag: Decidability

by Peter Koepke

23 April 2020

1 Herbrand's Theorem

Recall:

Theorem 1. (Herbrand's Theorem) Let S be a language which contains at least one constant symbol. Let

'=8x08x1:::8xm¡1

be a universal S-sentence with quanti�er-free matrix . Then ' is inconsistent i� there are variable-free S-terms
(�constant terms�)

t0
0; :::; tm¡1

0 ; :::; t0
N¡1; :::; tm¡1

N¡1

such that

'0=
^
i<N

t0
i:::tm¡1

i

x0:::xm¡1
=

t0
0:::tm¡1

0

x0:::xm¡1
^ :::^ t0

N¡1:::tm¡1
N¡1

x0:::xm¡1

is inconsistent.

1

This yields a general algorithm for proof search: to check whether
` �:

1. Form �=
[f:�g and let '= 8(
V
�) be the universal closure of

V
� . Then
` � i� �=
[f:�g is

inconsistent i� (
V
�)`? i� 8(

V
�)`? .

2. Transform ' into universal form '8=8x08x1:::8xm¡1 (Skolemization).

3. (Systematically) search for constant S-terms

t0
0; :::; tm¡1

0 ; :::; t0
N¡1; :::; tm¡1

N¡1

such that

'0=
^
i<N

t0
i:::tm¡1

i

x0:::xm¡1
=

t0
0:::tm¡1

0

x0:::xm¡1
^ :::^ t0

N¡1:::tm¡1
N¡1

x0:::xm¡1

is inconsistent.

4. If an inconsistent '0 is found, output �yes�, otherwise carry on.

2 Implementing Herbrand's Theorem in OCaml

Here is the implementation of the proof method from Harrison's Handbook:

let gilmore fm =
let sfm = skolemize(Not(generalize fm)) in

2

let fvs = fv sfm and consts,funcs = herbfuns sfm in
let cntms = image (fun (c,_) -> Fn(c,[])) consts in
length(gilmore_loop (simpdnf sfm) cntms funcs fvs 0 [[]] [] []);;

gilmore is a function, composed of other functions whose de�nition is also in Harrison's handbook. We can try
gilmore in OCaml, by starting the REPL with the �les from Harrison's book. This is organized by a Make�le:

koepke@dell:~/Desktop/OCaml$ make

gilmore <<exists y. forall x. P(y) ==> P(x)>>;;
0 ground instances tried; 1 items in list
0 ground instances tried; 1 items in list
1 ground instances tried; 1 items in list
1 ground instances tried; 1 items in list
- : int = 2

#

Some information on gilmore:

1. gilmore expects a formula from the data type formula:

type ('a)formula = False
|True
|Atom of 'a
|Not of ('a)formula
|And of ('a)formula * ('a)formula
|Or of ('a)formula * ('a)formula
|Imp of ('a)formula * ('a)formula

3

|Iff of ('a)formula * ('a)formula
|Forall of string * ('a)formula
|Exists of string * ('a)formula;;

This type has a type variable 'a for the atomic formulas. In our case that should be

type fol = R of string * term list;;

where

type term = Var of string

| Fn of string * term list;;

For example, x+y<z can be formalized as the atomic formula:

Atom(R("<",[Fn("+",[Var "x"; Var "y"]); Var "z"]))

The functions involved in gilmore work in the data type fol formula:

let generalize fm = itlist mk_forall (fv fm) fm;;

the function fv makes a list of the free variables of a formula; it is de�ned recursively in the familiar way:

let rec fv fm =
match fm with

False | True -> []
| Atom(R(p,args)) -> unions (map fvt args)
| Not(p) -> fv p
| And(p,q) | Or(p,q) | Imp(p,q) | Iff(p,q) -> union (fv p) (fv q)
| Forall(x,p) | Exists(x,p) -> subtract (fv p) [x];;

4

mk_forall is the simple operation of putting a universally quanti�ed variable in front of a formula:

let mk_and p q = And(p,q) and mk_or p q = Or(p,q)
and mk_imp p q = Imp(p,q) and mk_iff p q = Iff(p,q)
and mk_forall x p = Forall(x,p) and mk_exists x p = Exists(x,p);;

itlist is a �utility function� that lifts an operation to a list of variables:

itlist f [1;2;3] x = f 1 (f 2 (f 3 x))

We can get some information about �objects� in OCaml from their type. In the terminal:

Atom(R("<",[Fn("+",[Var "x"; Var "y"]); Var "z"]));;
- : fol formula = <<x + y < z>>
#

fv (Atom(R("<",[Fn("+",[Var "x"; Var "y"]); Var "z"])));;
- : string list = ["x"; "y"; "z"]
#

We can use �pretty parsing� and �pretty printing� of formulas:

fv <<x + y < z>>;;
- : string list = ["x"; "y"; "z"]
#

And then the generalization of that formula is:

generalize <<x + y < z>>;;

5

- : fol formula = <<forall x y z. x + y < z>>
#

3 The Decision Problems

gilmore is a complete proof procedure for �rst-order logic: if ' is universally valid (in all models) then gilmore
phi will (in principle) stop after a �nite time and has found a proof (a Herbrand-style inconsistency).

gilmore is a semi-decision procedure:

¡ if ' is valid, gilmore will certify this after a �nite time;

¡ if ' is not valid, gilmore will run forever.

The formula 9xP (x) is not universally valid:

gilmore << exists x. P(x) >>;;

leads into an in�nite loop:

1 ground instances tried; 1 items in list
1 ground instances tried; 1 items in list
1 ground instances tried; 1 items in list
1 ground instances tried; 1 items in list
1 ground instances tried; 1 items in list
1 ground instances tried; 1 items in list
1 ground instances tried; 1 items in list

6

1 ground instances tried; 1 items in list
1 ground instances tried; 1 items in list
1 ground instances tried; 1 items in list
1 ground instances tried; 1 items in list
1 ground instances tried; 1 items in list
1 ground instances tried; 1 items in list
1 ground instances tried; 1 items in list
1 ground instances tried; 1 items in list
1 ground instances tried; 1 items in list
^C1 ground instances tried; 1 items in listInterrupted.
#

The converse :9xP (x) is not universally valid either:

gilmore << exists x. P(x) >>;;

similarly leads to:

1 ground instances tried; 1 items in list
1 ground instances tried; 1 items in list
1 ground instances tried; 1 items in list
1 ground instances tried; 1 items in list
1 ground instances tried; 1 items in list
1 ground instances tried; 1 items in list
1 ground instances tried; 1 items in list
1 ground instances tried; 1 items in list
^C1 ground instances tried; 1 items in list

7

Interrupted.
#

So gilmore techniques are not able to decide the validity of 9xP (x). (We know that 9xP (x) and :9xP (x) are
both consistent, since there are interpretations of P which make both true.)

What we need is a

(3) Test whether a formula is valid or invalid (or whether it is satis�able
or unsatis�able). [copied from Harrison]

This is Hilbert's Entscheidungsproblem . Turing has given a negative answer to this in his article:

Turing, A. M. (1936) On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society (2), 42, 230�
265.

There is no procedure or algorithm solving the Entscheidungsproblem.

So we can only hope for solutions of restricted Entscheidungsprobleme. We look at the following restriction: T is
an (interesting) theory or axiom system; is the property T ` ' decidable?

De�nition 2. An L-theory T is decidable if there is an algorithm P such that for every L-sentence ' the algorithm
P with input d'e halts and outputs

¡ �yes� i� P ` ';

¡ �no� i� P 0 '.

8

This models the standard problem in theoretical mathematics: work in a �xed basic theory T (like Peano arith-
metic, �eld theory, or set theory) and decide whether ' is a consequence of T .

De�nition 3. An L-theory T is complete if T is consistent, and for every L-sentence '

T ` ' or T `:':

Theorem 4. If T is �nitely axiomatizable and complete, then T is decidable.

Proof. Let P be the following algorithms: after inputting the L-sentence ' :

¡ run gilmore (
V
T! ') and gilmore (

V
T!:') in parallel;

¡ since T is consistent and complete, exactly one of these processes terminates;

¡ if gilmore (
V
T! ') terminates, output �yes�;

¡ if gilmore (
V
T!:') terminates, output �no�.

Since T 0 ' is equivalent to (
V
T!:') this is a decision algorithm. �

Note: Harrison says:

this is usually not a very practical approach, so we will focus on more direct
methods of proving decidability.

9

Some important theories are complete and hence decidable:

¡ Dense linear orders without endpoints (DLO);

¡ algebraically closed �elds in a given characteristic, e.g., the theory of C;

¡ . . .

Other theories are incomplete:

¡ group theory;

¡ �eld theory;

¡ . . .

The Gödel incompleteness theorems yields many interesting incomplete theories:

Theorem 5. If ST is consistent then ST is incomplete, i.e., there is an 2-sentence ' such that ST 0 ' and
ST0:'.

ZFC (i.e., �mathematics�) is incomplete.

Are (some of) the incomplete theories nevertheless decidable?

Are there e�cient algorithms?

10

4 Quanti�er Elimination

De�nition 6. A theory T in a �rst-order language L admits quanti�er elimination if for

each formula p of L, there is a quanti�er-free formula q with FV(q) � FV(p)

such that T |= p , q (or as we sometimes say, p and q are T -equivalent).

As usual, we are interested in constructing quanti�er-free equivalents by an

algorithmic process, rather than merely showing that they exist in principle.

Quanti�er elemimation may lead to decidability:

For an L-sentence p let q be a T -equivalent quanti�er-free L-sentence. Often quanti�er-free sentences can be
decided by calculation. Quanti�er-free sentences in the theory of �elds are boolean combinations of equalities
between terms built from the constants 0 and 1 by + and �. Typical such equalities are (1 + 1) � (1 + 1) =
1+1+1+1 (true) or (1+ 1) � (1+ 1)=1+1+1 (false) (with some bracketing).

Harrison reduces the general question of quanti�er elimination to a restricted one:

Quite generally, to establish quanti�er elimination for arbitrary �rst-order
formulas, it su�ces to demonstrate it for formulas with the following rather
special form: 9x

W V
Literale $

W
9x

V
Literale

9x. a 1 ^ � � � ^ a n
with each a i a literal (either an atomic formula or the negation of an atomic
formula) containing x. The basic idea is that we can apply this elimination

11

successively from the innermost quanti�er to the outermost, transforming
8x.P [x] into :(9x.:P [x]) and always putting the body in disjunctive normal
form and distributing the existential quanti�er over it.

So if we think of

¡ afn as an auxiliary function that equivalently transforms atomic formulas; e.g., x6 y 7! :y < x, if we
consider dense linear orders;

¡ nfn as the transformation to disjunctive normal form;

¡ qfn as the single quanti�er elimination procedure for formulas of the form 9x. a 1 ^ � � � ^ a n

then the idea above of lifting qfn to arbitrary formulas fm is incorporated into

let lift_qelim afn nfn qfn =
let rec qelift vars fm =

match fm with
| Atom(R(_,_)) -> afn vars fm
| Not(p) -> Not(qelift vars p)
| And(p,q) -> And(qelift vars p,qelift vars q)
| Or(p,q) -> Or(qelift vars p,qelift vars q)
| Imp(p,q) -> Imp(qelift vars p,qelift vars q)
| Iff(p,q) -> Iff(qelift vars p,qelift vars q)
| Forall(x,p) -> Not(qelift vars (Exists(x,Not p)))
| Exists(x,p) ->

let djs = disjuncts(nfn(qelift (x::vars) p)) in

12

list_disj(map (qelim (qfn vars) x) djs)
| _ -> fm in

fun fm -> simplify(qelift (fv fm) (miniscope fm));;

We shall later encounter that lift for speci�c theories, e.g.,

let complex_qelim =
simplify ** evalc **
lift_qelim polyatom (dnf ** cnnf (fun x -> x) ** evalc)

basic_complex_qelim;;

5 Dense linear orders

Dense linear orders were axiomatized by the �nite axiom system DLO:

8xy:x=y_x<y_y<x;
8xyz:x<y^y<z)x<z;

8x::(x<x);
8xy:x<y)9z:x<z^z<y;
8x:9y:x<y;
8x:9y: y<x:

There quanti�er elimination is de�ned by:

let quelim_dlo =
lift_qelim afn_dlo (dnf ** cnnf lfn_dlo) (fun v -> dlobasic);;

13

where

let lfn_dlo fm =
match fm with

Not(Atom(R("<",[s;t]))) -> Or(Atom(R("=",[s;t])),Atom(R("<",[t;s])))
| Not(Atom(R("=",[s;t]))) -> Or(Atom(R("<",[s;t])),Atom(R("<",[t;s])))
| _ -> fm;;

and

let dlobasic fm =
match fm with

Exists(x,p) ->
let cjs = subtract (conjuncts p) [Atom(R("=",[Var x;Var x]))] in
try let eqn = find is_eq cjs in

let s,t = dest_eq eqn in
let y = if s = Var x then t else s in
list_conj(map (subst (x |=> y)) (subtract cjs [eqn]))

with Failure _ ->
if mem (Atom(R("<",[Var x;Var x]))) cjs then False else
let lefts,rights =

partition (fun (Atom(R("<",[s;t]))) -> t = Var x) cjs in
let ls = map (fun (Atom(R("<",[l;_]))) -> l) lefts
and rs = map (fun (Atom(R("<",[_;r]))) -> r) rights in
list_conj(allpairs (fun l r -> Atom(R("<",[l;r]))) ls rs)

| _ -> failwith "dlobasic";;

14

dlobasic ' requires, that ' is of the form 9x [moreover, will be a conjunction of (positive) literals that all
contain the variable x].

The list cjs of relevant literals is formed by removing the tautological formula x�x from the list of conjuncts of .

The program tries to �nd an equation eqn in cjs. This equation is of the form x� y or y�x [where y is a variable
distinct from x].

Then the result is formed by removing eqn from the conjuncts cjs, the substitution of x by y in the remaining
conjects, and subsequent conjunction. This uses the equivalence

9x(x� y ^ �(x))$ �(y);

with a quanti�er-free right hand side.

If there is no such equation eqn then consists only of inequalities of the form u<x or x<v.

If x<x is amongst them, the result is ? (False) because of the equivalence

DLO`9x(x<x^ �)$?

Otherwise, the inequalities are of the forms u<x or x<v with variables u; v=/ x. Then

DLO`9x(u0<x^ :::^um¡1<x^x<v0^ :::^x<vn¡1)$
^

i<m;j<n

ui<vj

and the quanti�er-free right-hand side is the result.

15

x?l r

16

17

	1 Herbrand's Theorem
	2 Implementing Herbrand's Theorem in OCaml
	3 The Decision Problems
	4 Quantifier Elimination
	5 Dense linear orders

