Hauptseminar Mathematische Logik, 1. Vortrag: Decidability

BY PETER KOEPKE
23 April 2020

1 Herbrand’s Theorem

Recall:
Theorem 1. (Herbrand’s Theorem) Let S be a language which contains at least one constant symbol. Let
o=VroVr)..Vr, 1 ¢

be a universal S-sentence with quantifier-free matriz 1. Then @ is inconsistent iff there are variable-free S-terms
(“constant terms”)

N-1 N-1
0, ot 1ty Lt T
such that
Hot 010 7RI A
90/:/\¢O mlzwo ml/\.“/\wo m—1
Q.. -Lm—1 To..-Lm—1 Q.- Lm—1

i<N
18 1nconsistent.

This yields a general algorithm for proof search: to check whether Q2+ x:

1. Form ®=QU{-x} and let p=V(A ®) be the universal closure of A ®. Then Qt x iff P=QU{-x} is
inconsistent iff (A ®)F L iff V(A ®)FL.

2. Transform ¢ into universal form ¥ =V Va,...Va,_1 ¥ (SKOLEMization).

3. (Systematically) search for constant S-terms

such that
thoh 940 AR A
S0/:/\ ¢ 0 m—1 _ 0 m—1 A A 0 m—1
To...-Tm—1 To...-Tm—1 To..-Tm—1

1S Inconsistent.

4. If an inconsistent ¢’ is found, output “yes”, otherwise carry on.

2 Implementing Herbrand’s Theorem in OCaml

Here is the implementation of the proof method from Harrison’s Handbook:

let gilmore fm =
let sfm = skolemize(Not(generalize fm)) in

let fvs = fv sfm and consts,funcs = herbfuns sfm in
let cntms = image (fun (c,_) -> Fn(c,[])) consts in
length(gilmore_loop (simpdnf sfm) cntms funcs fvs O [[1] [1 [1);;

gilmore is a function, composed of other functions whose definition is also in Harrison’s handbook. We can try
gilmore in 0Caml, by starting the REPL with the files from Harrison’s book. This is organized by a Makefile:

koepke@dell:~/Desktop/0Caml$ make

gilmore <<exists y. forall x. P(y) ==> P(x)>>;;
0 ground instances tried; 1 items in list

0 ground instances tried; 1 items in list

1 ground instances tried; 1 items in list

1 ground instances tried; 1 items in list

- : int = 2

#
Some information on gilmore:

1. gilmore expects a formula from the data type formula:

type (’a)formula = False
| True
|Atom of ’a
INot of (’a)formula
|And of (’a)formula * (’a)formula
|0r of (’a)formula * (’a)formula
|Imp of (’a)formula * (’a)formula

|Iff of (Pa)formula * (’a)formula
|Forall of string * (’a)formula
|Exists of string * (’a)formula;;

This type has a type variable ’>a for the atomic formulas. In our case that should be
type fol = R of string * term list;;
where
type term = Var of string
| Fn of string * term list;;
For example, x+ y <z can be formalized as the atomic formula:
Atom(R("<", [Fn("+", [Var "x"; Var "y"1]); Var "z"]))
The functions involved in gilmore work in the data type fol formula:
let generalize fm = itlist mk_forall (fv fm) fm;;
the function fv makes a list of the free variables of a formula; it is defined recursively in the familiar way:

let rec fv fm =
match fm with
False | True -> []
Atom(R(p,args)) -> unions (map fvt args)
Not(p) -> fv p
And(p,q) | O0r(p,q) | Imp(p,q) | Iff(p,q) -> union (fv p) (fv q)
Forall(x,p) | Exists(x,p) -> subtract (fv p) [x];;

mk_forall is the simple operation of putting a universally quantified variable in front of a formula:

let mk_and p q = And(p,q) and mk_or p q = 0r(p,q)
and mk_imp p q = Imp(p,q) and mk_iff p q = Iff(p,q)
and mk_forall x p = Forall(x,p) and mk_exists x p = Exists(x,p);;

itlist is a “utility function” that lifts an operation to a list of variables:
itlist f [1;2;3] x =f 1 (f 2 (f 3 x))

We can get some information about “objects” in OCaml from their type. In the terminal:

Atom(R("<",[Fn(”+”,[Var HXH; Var nyn]); Var "Z"]));;
: fol formula = <<x + y < z>>

#

fv (Atom(R("<", [Fn("+", [Var "x"; Var "y"l); Var "z"])));;
- String list = ["X"; "y"; uzu]
#

We can use “pretty parsing” and “pretty printing” of formulas:
fv <<x + y < z>>;;

- : string list = ["x"; "y"; "z"]
#

And then the generalization of that formula is:

generalize <<x + y < z>>;;

- : fol formula = <<forall xy z. x +y < z>>

3 The Decision Problems

gilmore is a complete proof procedure for first-order logic: if ¢ is universally valid (in all models) then gilmore
phi will (in principle) stop after a finite time and has found a proof (a Herbrand-style inconsistency).

gilmore is a semi-decision procedure:
— if ¢ is valid, gilmore will certify this after a finite time;
— if ¢ is not valid, gilmore will run forever.

The formula Jx P(x) is not universally valid:
gilmore << exists x. P(x) >>;;

leads into an infinite loop:

items in list
items in list
items in list
items in list
items in list
items in list
items in list

ground instances tried;
ground instances tried;
ground instances tried;
ground instances tried;
ground instances tried;
ground instances tried;
ground instances tried;

i e e e e
e e

items in list
items in list
items in list
items in list
items in list
items in list
items in list

ground instances tried;
ground instances tried;
ground instances tried;
ground instances tried;
ground instances tried;
ground instances tried;
ground instances tried;
ground instances tried; items in list

ground instances tried; items in list

~“Cl ground instances tried; 1 items in listInterrupted.
#

e e e e e
T e e e e T = e

The converse —3z P(x) is not universally valid either:
gilmore << exists x. P(x) >>;;

similarly leads to:

items in list
items in list
items in list
items in list
items in list
items in list

ground instances tried;
ground instances tried;
ground instances tried;
ground instances tried;
ground instances tried;
ground instances tried;
ground instances tried; items in list

ground instances tried; items in list

~Cl ground instances tried; 1 items in list

e e e
e e e e

Interrupted.
#

So gilmore techniques are not able to decide the validity of Jz P(x). (We know that 3z P(z) and —3z P(x) are
both consistent, since there are interpretations of P which make both true.)

What we need is a

(3) Test whether a formula is valid or invalid (or whether it is satisfiable

or unsatisfiable). [copied from Harrison]
This is Hilbert’s Entscheidungsproblem. Turing has given a negative answer to this in his article:

Turing, A. M. (1936) On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society (2), 42, 230
265.

There is no procedure or algorithm solving the Entscheidungsproblem.

So we can only hope for solutions of restricted Entscheidungsprobleme. We look at the following restriction: 7' is
an (interesting) theory or axiom system; is the property 7'+ ¢ decidable?

Definition 2. An L-theory T is decidable if there is an algorithm P such that for every L-sentence @ the algorithm
P with input [90] halts and outputs

yes” iff PF ;

"no” iff P¥F .

This models the standard problem in theoretical mathematics: work in a fixed basic theory T'(like Peano arith-
metic, field theory, or set theory) and decide whether ¢ is a consequence of 7.

Definition 3. An L-theory T is complete if T is consistent, and for every L-sentence @

T orTE—p.

Theorem 4. If T is finitely axiomatizable and complete, then T is decidable.

Proof. Let P be the following algorithms: after inputting the L-sentence ¢ :
— run gilmore (/\ 17— ¢) and gilmore (/\ 7'— —¢) in parallel;
— since T is consistent and complete, exactly one of these processes terminates;
— if gilmore (A T'—) terminates, output “yes”;
— if gilmore (/A T"— —) terminates, output “no”.
Since T'¥ ¢ is equivalent to (A 7T"— —) this is a decision algorithm. O

Note: Harrison says:

this is usually not a very practical approach, so we will focus on more direct

methods of proving decidability.

Some important theories are complete and hence decidable:
— Dense linear orders without endpoints (DLO);

— algebraically closed fields in a given characteristic, e.g., the theory of C;

Other theories are incomplete:
— group theory;

— field theory;

The Godel incompleteness theorems yields many interesting incomplete theories:

Theorem 5. If ST s consistent then ST is incomplete, i.e., there is an €-sentence p such that STV ¢ and

ZFC (i.e., “mathematics”) is incomplete.
Are (some of) the incomplete theories nevertheless decidable?

Are there efficient algorithms?

10

4 Quantifier Elimination

Definition 6. A theory T in a first-order language L admits quantifier elimination if for
each formula p of L, there is a quantifier-free formula q with FV(q) C FV(p)

such that T |= p < q (or as we sometimes say, p and q are T -equivalent).

As usual, we are interested in constructing quantifier-free equivalents by an

algorithmic process, rather than merely showing that they exist in principle.

Quantifier elemimation may lead to decidability:

For an L-sentence p let ¢ be a T-equivalent quantifier-free L-sentence. Often quantifier-free sentences can be
decided by calculation. Quantifier-free sentences in the theory of fields are boolean combinations of equalities
between terms built from the constants 0 and 1 by + and *. Typical such equalities are (1 +1)*(1+1)=
I1+1+1+1 (true) or (1+1)*(1+1)=1+1+1 (false) (with some bracketing).

Harrison reduces the general question of quantifier elimination to a restricted one:

Quite generally, to establish quantifier elimination for arbitrary first-order
formulas, it suffices to demonstrate it for formulas with the following rather
special form: 3z \/ A Literale < \/ Jz A\ Literale

Ix. ol AseoAan

with each o i a literal (either an atomic formula or the negation of an atomic

formula) containing x. The basic idea is that we can apply this elimination

11

successively from the innermost quantifier to the outermost, transforming
Vx.P [x] into =(3x.—P [x]) and always putting the body in disjunctive normal
form and distributing the existential quantifier over it.

So if we think of

— afn as an auxiliary function that equivalently transforms atomic formulas; e.g., * <y +— -y <z, if we
consider dense linear orders;

— nfn as the transformation to disjunctive normal form:;
— gfn as the single quantifier elimination procedure for formulas of the form dx. a 1 A. v v A a n

then the idea above of lifting qfn to arbitrary formulas fm is incorporated into

let 1lift_qgelim afn nfn qfn =
let rec gelift vars fm =

match fm with
Atom(R(_,_)) -> afn vars fm
Not(p) -> Not(qelift vars p)
And(p,q) -> And(gelift vars p,qelift vars q)
Or(p,q) -> Or(qelift vars p,qelift vars q)
Imp(p,q) -> Imp(gelift vars p,qelift vars q)
Iff(p,q) -> Iff(qelift vars p,qelift vars q)
Forall(x,p) -> Not(qelift vars (Exists(x,Not p)))
Exists(x,p) ->

let djs = disjuncts(nfn(qelift (x::vars) p)) in

12

list_disj(map (qgelim (gfn vars) x) djs)
| _ -> fm in
fun fm -> simplify(qelift (fv fm) (miniscope fm));;

We shall later encounter that lift for specific theories, e.g.,

let complex_qelim =
simplify ** evalc *x*
lift_qgelim polyatom (dnf ** cnnf (fun x -> x) ** evalc)
basic_complex_qgelim;;

5 Dense linear orders

Dense linear orders were axiomatized by the finite axiom system DLO:

Vey.x=yVr<yVy<zx,
Veyz.e<yAy<z=r<z,
Ve.~(rx<x),
Vey.r<y=dz.x<zAz<y,
Vr.dy.x<y,

Vr.dy.y<wz.

There quantifier elimination is defined by:

let quelim_dlo =
lift_qgelim afn_dlo (dnf ** cnnf 1fn_dlo) (fun v -> dlobasic);;

13

where

let 1fn_dlo fm =
match fm with
Not (Atom(R("<", [s;t]))) -> Or(Atom(R("=",[s;t])),Atom(R("<",[t;s])))
| Not(Atom(R("=",[s;t]))) -> Or(Atom(R("<",[s;t])),Atom(R("<",[t;s])))
| _ -> fm;;

and

let dlobasic fm =
match fm with
Exists(x,p) ->
let cjs = subtract (conjuncts p) [Atom(R("=",[Var x;Var x]))] in
try let eqn = find is_eq cjs in
let s,t = dest_eq eqn in
let y = if s = Var x then t else s in
list_conj(map (subst (x [=> y)) (subtract cjs [eqn]))
with Failure _ ->
if mem (Atom(R("<",[Var x;Var x]))) cjs then False else
let lefts,rights =
partition (fun (Atom(R("<",[s;t]))) -> t = Var x) cjs in
let 1s = map (fun (Atom(R("<",[1;_1))) -> 1) lefts
and rs = map (fun (Atom(R("<",[_;r]))) -> r) rights in
list_conj(allpairs (fun 1 r -> Atom(R("<",[1;r]))) 1ls rs)
_ -> failwith "dlobasic";;

14

dlobasic ¢ requires, that ¢ is of the form 3z [moreover, ¢ will be a conjunction of (positive) literals that all
contain the variable z|.

The list cjs of relevant literals is formed by removing the tautological formula x ==z from the list of conjuncts of .

The program tries to find an equation eqn in cjs. This equation is of the form z =1y or y=x [where y is a variable
distinct from z|.

Then the result is formed by removing eqn from the conjuncts cjs, the substitution of x by y in the remaining
conjects, and subsequent conjunction. This uses the equivalence

Jr(z=yAo(x)) < o(y),

with a quantifier-free right hand side.
If there is no such equation eqn then v consists only of inequalities of the form u <x or z <w.

If x <z is amongst them, the result is L (False) because of the equivalence
DLOF3dz(z <z A @)« L

Otherwise, the inequalities are of the forms u < x or x < v with variables u,v # x. Then

DLOF 3zx(ug<T A ... AUp 1 <TAT<UgNA ... \NT <V, 1) /\ u; < Uj
1<m,j<n

and the quantifier-free right-hand side is the result.

15

16

17

	1 Herbrand's Theorem
	2 Implementing Herbrand's Theorem in OCaml
	3 The Decision Problems
	4 Quantifier Elimination
	5 Dense linear orders

