Models of Set Theory I. - Summer 2019

Problem 45 (8 Points). Let M be a countable transitive model of ZFC, let κ be an uncountable regular cardinal in M and let $\mathbb{P} \in M$ be a separative partial order (see Problem 40). Show that, if \mathbb{P} is not $<\kappa$-distributive in M, then there is G \mathbb{P}-generic over M and $f: \lambda \longrightarrow$ Ord with $\lambda<\kappa$ and $f \in M[G] \backslash M$. (Hint: Work in M and fix a sequence $\left\langle D_{\alpha} \mid \alpha<\lambda\right\rangle$ of dense open subsets of \mathbb{P} such that $\lambda<\kappa$ and $\bigcap_{\alpha<\lambda} D_{\alpha}$ is not dense in \mathbb{P}. Given $\alpha<\lambda$, let $\left\langle a_{\beta}^{\alpha} \mid \beta<\nu_{\alpha}\right\rangle$ enumerate a maximal antichain in D_{α}. Define

$$
\sigma=\left\{\left(\operatorname{op}(\check{\alpha}, \check{\beta}), a_{\beta}^{\alpha}\right) \mid \alpha<\lambda, \beta<\nu_{\alpha}\right\} \in M^{\mathbb{P}}
$$

and find $G \mathbb{P}$-generic over M such that $\sigma^{G}: \lambda \longrightarrow$ Ord with $\left.\sigma^{G} \notin M\right)$.

Problem 46 (Almost disjoint coding forcing, 8 Points). Given a subset A of the set ${ }^{\omega} \omega$ of all functions from ω to ω, we define \mathbb{P}_{A} to be the partial order whose conditions are pairs $p=\left(c_{p}, X_{p}\right)$ with

- X_{p} is a finite subset of A.
- $c_{p}:{ }^{<\omega} \omega \xrightarrow{\text { part }} 2$ is a finite partial function.
such that $p \leq_{\mathbb{P}_{A}} q$ holds if and only if the following statements hold.
(1) $c_{q} \subseteq c_{p}$ and $X_{q} \subseteq X_{p}$.
(2) If $x \in X_{q}$ and $l<\omega$ with $x \upharpoonright l \in \operatorname{dom}\left(c_{p}\right) \backslash \operatorname{dom}\left(c_{q}\right)$, then $c_{p}(x \upharpoonright l)=1$.

Prove the following statements:
(a) Given $x \in A$ and $t \in{ }^{<\omega} \omega$, the set

$$
\left\{p \in \mathbb{P}_{A} \mid x \in X_{p} \wedge t \in \operatorname{dom}\left(c_{p}\right)\right\}
$$

is dense in \mathbb{P}_{A}.
(b) \mathbb{P}_{A} satisfies the countable chain condition.
(c) Given $y \in{ }^{\omega} \omega \backslash A$ and $k<\omega$, the set

$$
\left\{p \in \mathbb{P}_{A} \mid \exists l<\omega\left[k<l \wedge y \upharpoonright l \in \operatorname{dom}\left(c_{p}\right) \wedge c_{p}(y \upharpoonright l)=0\right]\right\}
$$

is dense in \mathbb{P}_{A}.
Let M be a transitive model of ZFC, let $A \in \mathcal{P}\left({ }^{\omega} \omega\right) \cap M$ and let G be \mathbb{P}_{A}^{M}-generic over M.
(d) There is a function $C:{ }^{<\omega} \omega \longrightarrow 2$ in $M[G]$ such that the equivalence

$$
x \in A \longleftrightarrow \exists N<\omega \forall n<\omega[N<n \longrightarrow C(x \upharpoonright n)=1]
$$

holds for every $x \in \mathcal{P}\left({ }^{\omega} \omega\right) \cap M$.

Problem 47 (6 Points). Let $\pi: \mathbb{P} \longrightarrow \mathbb{Q}$ be a dense embedding of partial orders. By recursion on the strongly well-founded relation " $a \in \operatorname{tc}(b)$ ", we define a class function

$$
\pi_{*}: \mathrm{V}^{\mathbb{P}} \longrightarrow \mathrm{V}^{\mathbb{Q}} ; \tau \mapsto\left\{\left(\pi_{*}(\sigma), \pi(p)\right) \mid(\sigma, p) \in \tau\right\}
$$

Prove that, if $\varphi\left(v_{0}, \ldots, v_{n-1}\right)$ is an \mathcal{L}_{ϵ}-formula, then

$$
p \vdash_{\mathbb{P}}^{*} \varphi\left(\tau_{0}, \ldots, \tau_{n-1}\right) \Longleftrightarrow \pi(p) \Vdash_{\mathbb{Q}}^{*} \varphi\left(\pi_{*}\left(\tau_{0}\right), \ldots, \pi_{*}\left(\tau_{n-1}\right)\right)
$$

holds for all $p \in \mathbb{P}$ and $\tau_{0}, \ldots, \tau_{n-1} \in \mathrm{~V}^{\mathbb{P}}$.

Problem 48 (16 Bonus Points). Let $\mathbb{B}=\left\langle\mathbb{B}, \leq, \wedge, \vee, 0,1,{ }^{\prime}\right\rangle$ be a complete boolean algebra, let \mathbb{B}^{*} denote the corresponding partial order and let \mathcal{U} be an ultrafilter on \mathbb{B} (i.e. there is an homomorphism $\pi_{\mathcal{U}}$ of boolean algebras from \mathbb{B} to the unique boolean algebra $\{0,1\}$ with two elements such that $\left.\mathcal{U}=\pi^{-1} "\{1\}\right)$.
Define a relation $\equiv \mathcal{U}$ on $V^{\mathbb{B}^{*}}$ by setting

$$
\sigma \equiv \mathcal{U} \tau \Longleftrightarrow \llbracket " \sigma=\tau " \rrbracket_{\mathbb{B}} \in \mathcal{U}
$$

for all $\sigma, \tau \in \mathrm{V}^{\mathbb{B}^{*}}$.
(1) Show that $\equiv \mathcal{U}$ is an equivalence relation on $\mathrm{V}^{\mathbb{B}^{*}}$.

Given $\tau \in \mathrm{V}^{\mathbb{B}^{*}}$, define

$$
[\tau]_{\mathcal{U}}=\left\{\sigma \in \mathrm{V}^{\mathbb{B}^{*}} \mid \sigma \equiv \mathcal{U} \tau \wedge \forall \rho \in \mathrm{V}^{\mathbb{B}^{*}}[\rho \equiv \mathcal{U} \tau \longrightarrow \operatorname{rank}(\rho) \geq \operatorname{rank}(\sigma)]\right\} \in \mathrm{V}
$$

Let V / \mathcal{U} denote the class $\left\{[\tau]_{\mathcal{U}} \mid \tau \in \mathrm{V}^{\mathbb{B}^{*}}\right\}$ and define a relation $\in_{\mathcal{U}}$ on V / \mathcal{U} by setting

$$
[\sigma]_{\mathcal{U}} \in_{\mathcal{U}}[\tau]_{\mathcal{U}} \Leftrightarrow \llbracket " \sigma \in \tau " \rrbracket_{\mathbb{B}} \in \mathcal{U}
$$

for all $\sigma, \tau \in \mathrm{V}^{\mathbb{B}^{*}}$.
(2) Show that the relation $\in_{\mathcal{U}}$ is well-defined.
(3) Show that

$$
\left(\mathrm{V} / \mathcal{U}, \in_{\mathcal{U}}\right) \models \varphi\left(\left[\tau_{0}\right]_{\mathcal{U}}, \ldots,\left[\tau_{n-1}\right]_{\mathcal{U}}\right) \Longleftrightarrow \llbracket \varphi\left(\tau_{0}, \ldots, \tau_{n-1}\right) \rrbracket_{\mathbb{B}} \in \mathcal{U}
$$

holds for every \mathcal{L}_{ϵ}-formula $\varphi\left(v_{0}, \ldots, v_{n-1}\right)$ and all $\tau_{0}, \ldots, \tau_{n-1} \in \mathrm{~V}^{\mathbb{B}^{*}}$.
(4) Show that $\left(\mathrm{V} / \mathcal{U}, \in_{\mathcal{U}}\right)$ is a model of ZFC.

Please hand in your solutions on Monday, July 01, before the lecture.

