PD Dr. Philipp Lücke

Problem sheet 11

Problem 41 (6 Points). Let M be a transitive model of ZFC, let κ be an uncountable regular cardinal in M, let $\mathbb{P} \in M$ be a partial order that satisfies the κ -chain condition in M and let G be \mathbb{P} -generic over M. Show that every stationary subset of κ in M is stationary in M[G] (Hint: Pick $\sigma, \tau \in M^{\mathbb{P}}$ with the property that σ^G is a closed unbounded subset of κ in M[G] and $\tau^G : \kappa \longrightarrow \kappa$ is the monotone enumeration of σ^G in M[G]. Use the name σ and the κ -chain condition to find a closed unbounded subset C of κ in M and a condition $p \in G$ with $(p \Vdash_{\mathbb{P}}^* \ \check{C} \subseteq \sigma^*)^M)$.

Problem 42. Given a non-principal ultrafilter \mathcal{U} on ω , we define $\mathbb{P}_{\mathcal{U}}$ to be the partial order whose conditions are pairs $p = (s_p, A_p)$ such that $s_p : n_p \longrightarrow \omega$ is a strictly increasing function with $n_p < \omega$ and $A_p \in \mathcal{U}$ and whose ordering is given by

- $p \leq_{\mathbb{P}_{\mathcal{U}}} q \iff s_q \subseteq s_p \ \land \ A_p \subseteq A_q \ \land \ \forall k \in \operatorname{dom}(s_p) \setminus \operatorname{dom}(s_q) \ s_p(k) \in A_q.$
- (1) (3 Points) Show that $\mathbb{P}_{\mathcal{U}}$ satisfies the countable chain condition.

Let M be a transitive model of ZFC, let \mathcal{U} be a non-principal ultrafilter on ω in M and let G be $\mathbb{P}^{M}_{\mathcal{U}}$ -generic over M.

- (2) (3 Points) Show that $s_G = \bigcup \{s_p \mid p \in G\}$ is a strictly increasing function with domain ω .
- (3) (4 Points) Prove that

$$\mathcal{U} = \{A \in \mathcal{P}(\omega) \cap M \mid \operatorname{ran}(s_G) \setminus A \text{ is finite}\}.$$

Problem 43. Let $\varphi(v_0, \ldots, v_n)$ be an \mathcal{L}_{\in} -formula, let \mathbb{P} be a partial order and let p be a condition in \mathbb{P} . Prove the following statements:

(1) (2 Points) If $\sigma_0, \ldots, \sigma_n, \tau_0, \ldots, \tau_n \in \mathcal{V}^{\mathbb{P}}$ with

$$p \Vdash_{\mathbb{P}}^{*} \varphi(\sigma_{0}, \dots, \sigma_{n}) \land \sigma_{0} = \tau_{0} \land \dots \land \sigma_{n} = \tau_{n},$$

then $p \Vdash_{\mathbb{P}}^* \varphi(\tau_0, \ldots, \tau_n)$.

(2) (Maximality Principle, 4 Points) If $\tau_0, \ldots, \tau_{n-1} \in \mathcal{V}^{\mathbb{P}}$ with the property that $p \Vdash_{\mathbb{P}}^* \exists x \ \varphi(x, \tau_0, \ldots, \tau_{n-1})$ holds, then there is $\sigma \in \mathcal{V}^{\mathbb{P}}$ with the property that $p \Vdash_{\mathbb{P}}^* \varphi(\sigma, \tau_0, \ldots, \tau_{n-1})$ holds (Hint: Set

$$D = \{ q \leq_{\mathbb{P}} p \mid \exists \rho \in \mathcal{V}^{\mathbb{P}} q \Vdash_{\mathbb{P}}^{*} \varphi(\rho, \tau_0, \dots, \tau_{n-1}) \}.$$

Let $\langle a_{\alpha} \mid \alpha < \lambda \rangle$ enumerate a maximal antichain in D and pick a sequence $\langle \rho_{\alpha} \in V^{\mathbb{P}} \mid \alpha < \lambda \rangle$ with $a_{\alpha} \Vdash_{\mathbb{P}}^{*} \varphi(\rho_{\alpha}, \tau_{0}, \ldots, \tau_{n-1})$ for every $\alpha < \lambda$. Use these sequences to construct a name σ with the desired properties).

Problem 44 (20 Bonus Points). Let $\mathbb{B} = \langle \mathbb{B}, \leq, \wedge, \vee, 0, 1, \rangle$ be a complete boolean algebra and let \mathbb{B}^* denote the corresponding partial order (see Problem 39). By induction on the structure of \mathcal{L}_{\in} -formulas, we define $[\![\varphi(\tau_0, \ldots, \tau_{n-1})]\!]_{\mathbb{B}} \in \mathbb{B}$ for every \mathcal{L}_{\in} -formula $\varphi(v_0, \ldots, v_{n-1})$ and $\tau_0, \ldots, \tau_{n-1} \in \mathbb{V}^{\mathbb{B}^*}$.

(i) By simultaneous induction on the well-founded relation " $a \in tc(b)$ ", we define

$$\llbracket \ "\tau_0 \in \tau_1" \ \rrbracket_{\mathbb{B}} = \sup \{ r \land \llbracket \ "\tau_0 = \rho" \ \rrbracket_{\mathbb{B}} \mid (\rho, r) \in \tau_1 \}$$

and

$$\llbracket ``\tau_0 = \tau_1"] \rrbracket_{\mathbb{B}} = \bigwedge_{i < 2} \inf_{\mathbb{B}} \{ r' \lor \llbracket "\rho \in \tau_i"] \rrbracket_{\mathbb{B}} \mid (\rho, r) \in \tau_{1-i} \}$$

- (ii) $\llbracket \neg \varphi(\tau_0, \ldots, \tau_{n-1}) \rrbracket_{\mathbb{B}} = \llbracket \varphi(\tau_0, \ldots, \tau_{n-1}) \rrbracket_{\mathbb{B}}'$
- (iii) $\llbracket \varphi_0(\tau_0,\ldots,\tau_{n-1}) \land \varphi_1(\tau_0,\ldots,\tau_{n-1}) \rrbracket_{\mathbb{B}} = \llbracket \varphi_0(\tau_0,\ldots,\tau_{n-1}) \rrbracket_{\mathbb{B}} \land \llbracket \varphi_1(\tau_0,\ldots,\tau_{n-1}) \rrbracket_{\mathbb{B}}.$
- (iv) $\llbracket \exists x \ \varphi(x, \tau_0, \dots, \tau_{n-1}) \rrbracket_{\mathbb{B}} = \sup_{\mathbb{B}} \{ \llbracket \varphi(\rho, \tau_0, \dots, \tau_{n-1}) \rrbracket_{\mathbb{B}} \mid \rho \in \mathbb{V}^{\mathbb{B}^*} \}.$
 - (1) Prove that the equivalence

$$p \Vdash_{\mathbb{B}^*}^* \varphi(\tau_0, \dots, \tau_{n-1}) \iff p \le \llbracket \varphi(\tau_0, \dots, \tau_{n-1}) \rrbracket_{\mathbb{B}}$$

holds for every \mathcal{L}_{\in} -formula $\varphi(v_0, \ldots, v_{n-1}), \tau_0, \ldots, \tau_{n-1} \in \mathcal{V}^{\mathbb{B}^*}$ and $p \in \mathbb{B}^*$.

(2) Prove that $V^{\mathbb{B}^*}$ is full, i.e. for every \mathcal{L}_{\in} -formula $\varphi(v_0, \ldots, v_n)$ and all $\tau_0, \ldots, \tau_{n-1} \in V^{\mathbb{B}^*}$, there is $\sigma \in V^{\mathbb{B}^*}$ with

$$\llbracket \exists x \ \varphi(x, \tau_0, \dots, \tau_{n-1}) \rrbracket_{\mathbb{B}} = \llbracket \varphi(\sigma, \tau_0, \dots, \tau_{n-1}) \rrbracket_{\mathbb{B}}.$$

- (3) Prove that the following statements hold for all $\tau_0, \tau_1, \tau_2 \in V^{\mathbb{B}^*}$.
 - (a) $[\!["\tau_0 = \tau_0"]\!]_{\mathbb{B}} = 1.$
 - (b) $[\!["\tau_0 = \tau_1"]\!]_{\mathbb{B}} = [\!["\tau_1 = \tau_0"]\!]_{\mathbb{B}}.$
 - (c) $[\!["\tau_0 = \tau_1"]\!]_{\mathbb{B}} \cdot [\!["\tau_1 = \tau_2"]\!]_{\mathbb{B}} \leq [\!["\tau_0 = \tau_2"]\!]_{\mathbb{B}}.$
 - (d) $[\!["\tau_0 \in \tau_1"]\!]_{\mathbb{B}} \cdot [\!["\tau_0 = \tau_2"]\!]_{\mathbb{B}} \leq [\!["\tau_2 \in \tau_1"]\!]_{\mathbb{B}}.$
 - (e) $[\!["\tau_0 \in \tau_1"]\!]_{\mathbb{B}} \cdot [\!["\tau_1 = \tau_2"]\!]_{\mathbb{B}} \leq [\!["\tau_0 \in \tau_2"]\!]_{\mathbb{B}}.$
- (4) Prove that $[(Extensionality)]_{\mathbb{B}} = 1.$
- (5) Given a Σ_0 -formula $\varphi(v_0, \ldots, v_{n-1})$, prove that

$$\varphi(a_0,\ldots,a_{n-1}) \longleftrightarrow \llbracket \varphi(\check{a}_0,\ldots,\check{a}_{n-1}) \rrbracket_{\mathbb{B}} = 1$$

holds for all a_0, \ldots, a_{n-1} .

(6) Given $\tau \in \mathbf{V}^{\mathbb{B}^*}$, we have

$$[\!["\tau \in \operatorname{Ord}"]\!]_{\mathbb{B}} = \sup_{\mathbb{B}} \{ [\![\tau = \check{\alpha}]\!]_{\mathbb{B}} \mid \alpha \in \operatorname{Ord} \}.$$

- (7) Prove that $[[(Infinity)]]_{\mathbb{B}} = 1.$
- (8) Prove that $\llbracket \varphi \rrbracket_{\mathbb{B}} = 1$ whenever φ is an axiom of ZFC.

Please hand in your solutions on Monday, June 24, before the lecture.