PD Dr. Philipp Lücke	Problem sheet 10
----------------------	------------------

Problem 37. Let M be a transitive model of ZFC, let $\mathbb{P}, \mathbb{Q} \in M$ be partial orders and let $\pi : \mathbb{Q} \longrightarrow \mathbb{P}$ be a dense embedding of partial orders that is an element of M. Prove the following statements:

- (1) (1 Points) If G_0 and G_1 are \mathbb{P} -generic over M with $G_0 \subseteq G_1$, then $G_0 = G_1$.
- (2) (1 Points) If G is \mathbb{P} -generic over M, then there is H \mathbb{Q} -generic over M with M[G] = M[H].
- (3) (1 Points) If H is \mathbb{Q} -generic over M, then there is G \mathbb{P} -generic over M with M[G] = M[H].
- (Hint: Use Problem 32 and the minimality of generic extensions).

Problem 38. Prove the following statements:

(1) (2 Points) If ZFC is consistent, then there is no Σ_1 -formula $\varphi(v)$ such that

 $\operatorname{ZFC} \vdash \forall x \ [\varphi(x) \iff "x \ is \ a \ cardinal"].$

(2) (2 Points) If ZFC is consistent, then there is no Σ_1 -formula $\varphi(v_0, v_1)$ such that

$$\operatorname{ZFC} \vdash \forall x, y \ [\varphi(x, y) \iff "x = \mathcal{P}(y)".$$

Problem 39. Let $X = (X, \tau)$ be a non-empty topological space. We let ro(X) denote the set of all regular open subsets of X (i.e. int(cl(A)) = A). Given $U, V \in ro(X)$, define

$$U \lor V \ = \ int(cl(U \cup V))$$

and

$$U' = int(X \setminus U).$$

(1) (3 Points) Show that

$$\mathbb{B}(X) = \langle \operatorname{ro}(X), \subseteq, \cap, \vee, \emptyset, X, ' \rangle$$

is a complete boolean algebra.

Given a partial order \mathbb{P} , we define $\tau_{\mathbb{P}}$ to be the set of all subsets of \mathbb{P} that are open in \mathbb{P} .

(2) (1 Points) Show that $X_{\mathbb{P}} = (\mathbb{P}, \tau_{\mathbb{P}})$ is a topological space.

Given a boolean algebra $\mathbb{B} = \langle B, \leq, \wedge, \vee, 0, 1, \rangle$, we define \mathbb{B}^* to be the partial order $\langle B \setminus \{0\}, \leq \rangle$.

(3) (3 Points) Show that the map

 $\pi_{\mathbb{P}}: \mathbb{P} \longrightarrow \operatorname{ro}(X_{\mathbb{P}}); \ p \longmapsto int(cl(\{q \in \mathbb{P} \mid q \leq_{\mathbb{P}} p\}))$

is a dense embedding of \mathbb{P} into the partial order $\mathbb{B}(X_{\mathbb{P}})^*$.

Problem 40. A partial order \mathbb{P} is *separative* if for all conditions p and q in \mathbb{P} with $p \not\leq_{\mathbb{P}} q$ there is a condition r in \mathbb{P} with $r \leq_{\mathbb{P}} p$ and $q \perp_{\mathbb{P}} r$. Prove the following statements:

- (1) (2 Points) If \mathbb{B} is a boolean algebra, then \mathbb{B}^* is separative.
- (2) (2 Points) Show that a partial order \mathbb{P} is separative if and only if the following statements hold:
 - (a) The embedding $\pi_{\mathbb{P}}$ constructed in (3) of Problem 39 is injective.

(b) $\forall p, q \in \mathbb{P} \ [p \leq_{\mathbb{P}} q \iff \pi_{\mathbb{P}}(p) \subseteq \pi_{\mathbb{P}}(q)].$

(3) (2 Points) If \mathbb{P} is a partial order, then there is a surjective complete embedding of \mathbb{P} into a separative partial order (Hint: Show that

 $p \approx_{sep} q \iff \forall r \in \mathbb{P} \ [\ p \parallel_{\scriptscriptstyle \mathbb{P}} r \iff q \parallel_{\scriptscriptstyle \mathbb{P}} r]$

defines an equivalence relation on \mathbb{P} . Then define a suitable ordering of the set of \approx_{sep} -equivalence classes).

Please hand in your solutions on Monday, June 17, before the lecture.