PD Dr. Philipp Lücke	Problem sheet 9
----------------------	-----------------

Problem 33. Remember that a subset of a topological space is *nowhere dense* if its closure has empty interior. Moreover, recall that the *Cantor space* is the topological space consisting of the set $^{\omega}2$ of all functions from ω to 2 equipped with the topology whose basic open sets are of the form

$$B_s = \{ x \in {}^{\omega}2 \mid s \subseteq x \}$$

for some functions s contained in the set ${}^{<\omega}2$ of all functions $t:n \longrightarrow 2$ with $n < \omega$. We say that a sequence $\vec{s} = \langle s_i \in {}^{<\omega}2 \mid i < \omega \rangle$ is a code for a closed nowhere dense subset of the Cantor space if

$$N_{\vec{s}} = {}^{\omega}2 \setminus \bigcup \{B_{s_i} \mid i < \omega\}$$

is a nowhere dense subset of ${}^{\omega}2$.

(1) (2 Points) Prove that the statement

" \vec{s} is a code for a closed nowhere dense subset of the Cantor space"

is absolute between transitive models of ZFC.

- (2) (3 Points) Prove that the following statements are equivalent for every transitive model M of ZFC and every filter G on Cohen forcing \mathbb{C} :
 - (a) G is \mathbb{C} -generic over M.
 - (b) If $\vec{s} \in M$ is a code for a closed nowhere dense subset of the Cantor space, then $\bigcup G \notin N_{\vec{s}}$.

Problem 34 (5 Points). Prove Lemma 4.2.4. from the lecture course: Assume ZF⁻ and let $\varphi(v_0, \ldots, v_{n-1})$ be an \mathcal{L}_{\in} -formula. The following statements are equivalent for every partial order \mathbb{P} , every $p \in \mathbb{P}$ and all $\tau_0, \ldots, \tau_{n-1} \in \mathbb{V}^{\mathbb{P}}$.

- (1) $p \Vdash_{\mathbb{P}}^* \varphi(\tau_0, \ldots, \tau_{n-1}).$
- (2) $q \Vdash_{\mathbb{P}}^* \varphi(\tau_0, \ldots, \tau_{n-1})$ for every $q \in \mathbb{P}$ with $q \leq_{\mathbb{P}} p$.
- (3) The set $\{q \in \mathbb{P} \mid q \Vdash_{\mathbb{P}}^* \varphi(\tau_0, \dots, \tau_{n-1})\}$ is dense below p in \mathbb{P} .

Problem 35. Assume ZF^- and let $\varphi(v_0, \ldots, v_n)$ be an \mathcal{L}_{\in} -formula. If \mathbb{P} is a partial order, $p \in \mathbb{P}$ and $\tau, \tau_0, \ldots, \tau_{n-1} \in V^{\mathbb{P}}$, then the following statements hold:

- (1) (2 Points) $p \Vdash_{\mathbb{P}}^* \forall x \ \varphi(x, \tau_0, \dots, \tau_{n-1})$ if and only if $p \Vdash_{\mathbb{P}}^* \varphi(\sigma, \tau_0, \dots, \tau_{n-1})$ for all $\sigma \in V^{\mathbb{P}}$.
- (2) (2 Points) $p \Vdash_{\mathbb{P}}^* \exists x \in \tau \ \varphi(x, \tau_0, \dots, \tau_{n-1})$ if and only if the set

 $\{q \in \mathbb{P} \mid \exists (\rho, r) \in \tau \; [q \leq_{\mathbb{P}} r \land q \Vdash_{\mathbb{P}}^{*} \varphi(\rho, \tau_{0}, \dots, \tau_{n-1})]\}$

is dense below p in \mathbb{P} .

(3) (2 Points) $p \Vdash_{\mathbb{P}}^* \forall x \in \tau \ \varphi(x, \tau_0, \dots, \tau_{n-1})$ if and only if $q \Vdash_{\mathbb{P}}^* \varphi(\rho, \tau_0, \dots, \tau_{n-1})$ holds for all $(\rho, r) \in \tau$ and $q \in \mathbb{P}$ with $q \leq_{\mathbb{P}} p, r$.

Problem 36 (6 Points). Let $\operatorname{Fn}(\omega, \omega, \omega)$ denote the partial order consisting of all finite partial functions $p: \omega \xrightarrow{par} \omega$ ordered by reversed inclusion.

- (1) (2 Points) Construct a dense subset D of the Cohen forcing \mathbb{C} and a dense embedding of the partial order (D, \supseteq) into $\operatorname{Fn}(\omega, \omega, \omega)$.
- (2) (2 Points) Let P be a countable atomless partial order with a maximal element 1_P. Prove that there is a dense embedding of a dense subset of Fn(ω, ω, ω) into P (Hint: Use a previous exercise to show that there is an infinite antichain below every condition in P. Fix an enumeration ⟨p_n | n < ω⟩ of P and define a function π by recursion. Set π(Ø) = 1_P. If π(s) is defined for some s : n → ω, then extend π in a way such that {π(s^(m)) | m < ω} is a maximal antichain below π(s) in P. Moreover, if the conditions p_n and π(s) are compatible in P, then ensure that there is an m < ω with π(s^(m)) ≤_P p_n. Show that the resulting function is a dense embedding.).

Please hand in your solutions on Monday, June 03, before the lecture.

 $\mathbf{2}$