PD Dr. Philipp Lücke	Problem sheet 7
----------------------	-----------------

Problem 25 (4 Points). Given an uncountable regular cardinal κ , compute the order-type of $(L_{\kappa}, <_{L} \upharpoonright (L_{\kappa} \times L_{\kappa}))$.

Problem 26. Let κ be an uncountable regular cardinal.

- (a) The cardinal κ is *weakly Mahlo* if the set of all regular cardinals smaller than κ is a stationary subset of κ .
- (b) The cardinal κ is Mahlo if the set of all inaccessible cardinals smaller than κ is a stationary subset of κ.
- (1) (2 Points) Show that a cardinal is Mahlo if and only if it is inaccessible and weakly Mahlo.
- (2) (2 Points) Show that (κ is Mahlo)^L holds for all weakly Mahlo cardinals κ .
- (3) (2 Points) Prove that the following statements are equivalent:
 - (i) The theory ZFC + "there is a strongly inaccessible cardinal" is inconsistent.
 - (ii) The theory ZFC+" there is a weakly Mahlo cardinal" is consistent relative to the theory ZFC+" there is a strongly inaccessible cardinal".

Problem 27. Given non-empty sets M and N with $M \subseteq N$, we let $M \preceq N$ ("M is an elementary submodel of N") denote the statement that

$$\mathsf{Sat}(M, a, k) \iff \mathsf{Sat}(N, a, k)$$

holds for all $k \in \mathsf{FmI}$ and all functions $a : n \longrightarrow M$ with $n < \omega$.

- (1) (*The Tarski–Vaught–Test*, 2 Points) Prove that the following statements are equivalent for all sets $\emptyset \neq M \subseteq N$:
 - (a) $M \preceq N$.
 - (b) If $i, n < \omega, k \in \mathsf{Fml}, a : n \longrightarrow M$ and $y \in N$ with $\mathsf{Sat}(N, a|_y^i, k)$, then there is $z \in M$ with $\mathsf{Sat}(M, a|_x^i, k)$.
- (2) (Elementary Chains, 2 Points) Let $\lambda \in \text{Lim}$ and let $(M_{\alpha} \mid \alpha < \lambda)$ be a sequence of non-empty sets with $M_{\alpha} \preceq M_{\beta}$ for all $\alpha \leq \beta < \lambda$. Set $M = \bigcup \{M_{\alpha} \mid \alpha < \lambda\}$. Prove that $M_{\alpha} \preceq M$ holds for all $\alpha < \lambda$.
- **Problem 28.** (1) (2 Points) Given an uncountable regular cardinal κ and a cardinal $\theta > \kappa$, construct a sequence $(M_{\alpha} \mid \alpha < \kappa)$ of subsets of $H(\theta)$ such that the following statements hold for all $\beta < \kappa$:
 - (a) $\kappa \in M_{\beta}, \beta \leq M_{\beta} \cap \kappa \in \kappa \text{ and } |M_{\alpha}| < \kappa.$

- (b) If $\alpha < \beta$, then $M_{\alpha} \subsetneq M_{\beta}$ and $M_{\alpha} \preceq M_{\beta} \preceq \mathrm{H}(\theta)$.
- (c) If $\beta \in \text{Lim}$, then $M_{\beta} = \bigcup \{M_{\alpha} \mid \alpha < \beta\}$.
- (Hint: Use Theorem 1.3.12 and Problem 27).
- (2) (4 Points) Assume V = L. Let C be a closed unbounded subset of \aleph_1 and let S be a stationary subset of \aleph_1 . Prove that there is an $\alpha \in \text{Ord}$ with $(\text{ZFC}^- + "\aleph_1 \text{ exists }")^{L_{\alpha}}$ and $\aleph_1^{L_{\alpha}} \in C \cap S$ (Hint: Use the first part of the exercise and Theorem 3.3.1).

Please hand in your solutions on Monday, May 20, before the lecture.