PD Dr. Philipp Lücke	Problem sheet 6
----------------------	-----------------

Problem 21 (4 Points). Prove Proposition 2.2.1. from the lecture course: Assume ZF^- . Given $a_0, a_1 \in {}^{<\omega}Ord$, we define

 $a_0 \prec^* a_1 \iff \max(\operatorname{ran}(a_0)) < \max(\operatorname{ran}(a_1))$ $\lor (\max(\operatorname{ran}(a_0)) = \max(\operatorname{ran}(a_1)) \land \operatorname{dom}(a_0) < \operatorname{dom}(a_1))$ $\lor (\max(\operatorname{ran}(a_0)) = \max(\operatorname{ran}(a_1)) \land \operatorname{dom}(a_0) = \operatorname{dom}(a_1)$ $\land \exists n \in \operatorname{dom}(a_0) \ [a_0 \upharpoonright n = a_1 \upharpoonright n \land a_0(n) < a_1(n)]).$

Then the relation \prec^* strongly well-orders the class ${}^{<\omega}$ Ord.

Problem 22. Let V = HOD denote the statement " $\forall x \ x \in HOD$ ".

(1) (1 Point) Show that there is an \mathcal{L}_{\in} -formula $\varphi(v_0, v_1)$ with the property that ZF + V = HOD \vdash " The relation $\{(a, b) \mid \varphi(a, b)\}$

is a well-ordering of V of order-type Ord".

(2) (3 Points) Show that

 $ZF \vdash "If the relation \{(a, b) \mid \varphi(a, b)\}$ is a well-ordering of V of order-type Ord, then V = HOD holds ".

holds for every \mathcal{L}_{\in} -formula $\varphi(v_0, v_1)$.

Problem 23. Prove Proposition 3.1.1. from the lecture course:

- (1) (2 Points) Assume ZF⁻. For every set x, the class ${}^{<\omega}x$ is a set.
- (2) (2 Points) The canonical formula defining the class function that sends a set x to ${}^{<\omega}x$ is a $\Delta_1^{\rm ZF^-}$ -formula.

Problem 24 (8 Points). Show $ZF^- \vdash (ZF^-)^L$.

Please hand in your solutions on Monday, May 13, before the lecture.

The student council of mathematics will organize the math party on 9/05 in N8schicht. The presale will be held on Mon 6/05, Tue 7/05 and Wed 8/05 in the mensa Poppelsdorf. Further information can be found at fsmath.uni-bonn.de.