PD Dr. Philipp Lücke	Problem sheet 5
----------------------	-----------------

- **Problem 17.** (1) (2 Points) Show that the canonical formula that defines the function Sep : Fml \longrightarrow Fml that sends an element of Fml to the canonical element of Fml that represents the corresponding instance of the Separation scheme is a Δ_1^{ST} -formula.
 - (2) (1 Points) Show that
 - $$\begin{split} \mathrm{ST} \vdash \forall k \in \mathsf{Fml} \ \forall M \neq \emptyset \ \forall 1 < n < \omega \ \forall a : n \longrightarrow M \ \left[\mathsf{Sat}(M, a, \mathsf{Sep}(k)) \\ \longleftrightarrow \ \exists x \in M \ \forall y \in M \ (y \in x \ \longleftrightarrow \ (y \in a(1) \land \mathsf{Sat}(M, a|_y^0, k)))\right] \end{split}$$
 - (3) (2 Points) Show that the canonical formula that defines the function Repl : $Fml \longrightarrow Fml$ that sends an element of Fml to the canonical element of Fml that represents the corresponding instance of the Replacement scheme is a Δ_1^{ST} -formula.
 - (4) (3 Points) Formulate and prove the analogue of (2) for the function Repl.

Problem 18 (4 Points). Prove Lemma 1.3.19 from the lecture course: If κ is a strongly inaccessible cardinal, then $\mathsf{Sat}(V_{\kappa}, \emptyset, k)$ holds for every $k \in \lceil \mathsf{ZFC} \rceil$.

Problem 19 (4 Points). Prove Proposition 2.1.4 from the lecture course: There is a Δ_1^{ST} -formula $\varphi(v_0, v_1)$ with

$$ST \vdash "$$
 The relation $\{(a, b) \mid \varphi(a, b)\}$ is a well-ordering
of the class V_{ω} of order-type ω ".

Problem 20 (4 Points). Prove Lemma 2.1.5 from the lecture course: Assume ZF. If A is a class that is defined by an \mathcal{L}_{\in} -formula that only uses parameters from $A \cup \text{Ord}$, then there is an \mathcal{L}_{\in} -formula $\Phi(v_0, v_1)$ with the property that for every $x \in \text{OD}_A$, there is a function $a : n \longrightarrow A \cup \text{Ord}$ with $n < \omega$ and $x = \{y \mid \Phi(y, a)\}$.

Please hand in your solutions on Monday, May 06, before the lecture.