PD Dr. Philipp Lücke

Problem sheet 4

Problem 13. (1) (2 Points) Construct an \mathcal{L}_{\in} -sentence φ with

 $\operatorname{ZFC} \vdash \forall \alpha \in \operatorname{Ord} [\varphi^{V_{\alpha}} \longrightarrow "\alpha \text{ is a strong limit cardinal"}].$

- (2) (4 Points) Prove that the following statements are equivalent:
 - (a) $ZFC \vdash$ "There are no strongly inaccessible cardinals".
 - (b) There is an \mathcal{L}_{\in} -sentence φ with

 $\operatorname{ZFC} \vdash \forall \alpha \in \operatorname{Ord} [\varphi^{V_{\alpha}} \iff "\alpha \text{ is strongly inaccessible "}].$

- (3) (4 Points) Show that the following statements are equivalent for every \mathcal{L}_{\in} -theory T extending ZFC and every \mathcal{L}_{\in} -formula $\varphi(v_0, \ldots, v_{n-1})$:
 - (a) φ is a Σ_2^{T} -formula.
 - (b) There is an \mathcal{L}_{\in} -formula $\psi(v_0, \ldots, v_{n-1})$ with

 $\mathsf{T} \vdash \forall x_0, \dots, x_{n-1} \left[\varphi(x_0, \dots, x_{n-1}) \\ \longleftrightarrow \exists \alpha \in \operatorname{Ord} (x_0, \dots, x_{n-1} \in V_\alpha \land \psi^{V_\alpha}(x_0, \dots, x_{n-1})) \right].$

(Hint: Use (1) and the Σ_1 -Reflection Principle).

Problem 14 (2 Points). Prove Proposition 1.3.2: Assume ZF^- . Then the relation \prec_* defined by

$$a\prec_*b\iff \exists c,d\ [b=(c,a,d)\ \lor\ b=(c,d,a)]$$

is strongly well-founded.

Problem 15 (4 Points). Prove Lemma 1.3.9: Assume ZF⁻. Given an \mathcal{L}_{\in} -formula $\varphi(v_0, \ldots, v_{n-1})$, if M is a non-empty set and $a: n \longrightarrow M$, then

$$\mathsf{Sat}(M, a, \lceil \varphi \rceil) \iff \varphi^M(a(0), \dots, a(n-1)).$$

Problem 16 (4 Points). Show that if ZFC is consistent, then there is no \mathcal{L}_{\in} -formula $\varphi(v_0, v_1)$ with

$$\text{ZFC} \vdash \forall x, y \; \forall k \in \mathsf{Fml} \; \left[(\varphi(k, x) \land \varphi(k, y)) \; \longrightarrow \; x = y \right]$$

and

 $\mathbf{2}$

$$\begin{split} \text{ZFC} \ \vdash \ (\exists x \ \forall y \ [\psi(y) \ \longleftrightarrow \ x = y]) \ \longrightarrow \ \forall y \ [\varphi(\ulcorner \psi \urcorner, y) \ \longleftrightarrow \ \psi(y)] \end{split}$$
for every $\mathcal{L}_{\in}\text{-formula} \ \psi(v). \end{split}$

Please hand in your solutions on Monday, April 29, before the lecture.