PD Dr. Philipp Lücke	Problem sheet 3
----------------------	-----------------

Problem 9 (4 Points). Examine which axioms of ZFC hold in the class $V \setminus V_{\omega}$.

Problem 10 (3 points). Given a singular cardinal κ , examine which axioms of ZFC hold in $H(\kappa)$.

Problem 11. Let \mathcal{L}_* denote the first-order language that extends \mathcal{L}_{\in} by a unary predicate symbol \dot{C} and let ZFC_{*} denote the canonical \mathcal{L}_* -theory that extends ZFC by expanding the Replacement and Separation schema to ZFC_{*}-formulas. Given an \mathcal{L}_{\in} -formula $\varphi(v_0, \ldots, v_{n-1})$, we let $\operatorname{Refl}_{\varphi}$ denote the \mathcal{L}_* -sentence

$$\forall \alpha \in \operatorname{Ord} \left[\alpha \in \dot{C} \longrightarrow \forall z_0, \dots, z_{n-1} \in \mathcal{V}_{\alpha} \right]$$
$$\left[\varphi(z_0, \dots, z_{n-1}) \longleftrightarrow \varphi^{\mathcal{V}_{\alpha}}(z_0, \dots, z_{n-1}) \right] \right].$$

(1) (6 points) Show that the theory

 $T = \mathsf{ZFC}_* + \{\mathsf{Refl}_{\varphi} \mid \varphi \text{ is an } \mathcal{L}_{\in}\text{-formula}\} + "\dot{C} \text{ is a closed unbounded class of cardinals "}$

is consistent relative to ZFC.

(2) (1 points) Show that

$$T \vdash \forall \alpha \; [\alpha \in C \; \longrightarrow \; "\alpha \; is \; a \; strong \; limit \; cardinal "].$$

Problem 12 (6 points). Complete the proof of the Σ -Recursion Theorem: Given $0 < n < \omega$, an \mathcal{L}_{\in} -formula $\psi(v_0, \ldots, v_{n+1})$ and Σ_n -formulas $\varphi_0(v_0, \ldots, v_{n+2})$ and $\varphi(v_0, \ldots, v_{n+1})$, there is a Σ_n -formula $\Phi(v_0, \ldots, v_{n+1})$ such that the theory $\mathsf{ZF}^- - (Infinity)$ proves the following \mathcal{L}_{\in} -sentence:

For all z_0, \ldots, z_{n-1} , if

$$R = \{ \langle a, b \rangle \mid \psi(a, b, z_0, \dots, z_{n-1}) \}$$

is a strongly well-founded relation,

 $G = \{ \langle \langle a_0, a_1 \rangle, b \rangle \mid \varphi_0(a_0, a_1, b, z_0, \dots, z_{n-1}) \}$

is a class function with domain $\mathbf{V}\times\mathbf{V}$ and

$$P = \{ \langle a, b \rangle \mid \varphi(a, b, z_0, \dots, z_{n-1}) \}$$

is a class function with domain V and $P(a) = \{b \mid bRa\}$ for all sets a, then

$$F = \{ \langle a, b \rangle \mid \Phi(a, b, z_0, \dots, z_{n-1}) \}$$

is a class function with domain V and $F(a) = G(a, F \upharpoonright P(a))$ for all sets $a^{"}$.

Please hand in your solutions on Tuesday, April 23, before 10am.