Problem 5 (4 Points). Prove Lemma 1.1.6.(ii) from the lecture course: Assume ZF^- . Let W be a non-empty transitive class and $\varphi(v_0,\ldots,v_{n+1})$ be an \mathcal{L}_{\in} formula. Then $(\mathsf{Replacement}_{\varphi})^W$ holds if and only if for all $c_0,\ldots,c_{n-1}\in W$, either there are $a,b_0,b_1\in W$ with $\varphi^W(a,b_i,c_0,\ldots,c_{n-1})$ for all i<2, or there is an $a\in W$ with $\neg\varphi^W(a,b,c_0,\ldots,c_{n-1})$ for all $b\in W$, or

$$\{b \in W \mid \exists a \in d \ \varphi^W(a, b, c_0, \dots, c_{n-1})\} \in W$$

for every $d \in W$.

Problem 6 (4 points). Show that the following statements are equivalent for every \mathcal{L}_{\in} -theory T extending ZF and every \mathcal{L}_{\in} -formula $\varphi(v_0, \ldots, v_{n-1})$:

- (1) φ is a Σ_1^{T} -formula.
- (2) There is a \mathcal{L}_{\in} -formula $\psi(v_0, \ldots, v_{n-1})$ with

$$\mathsf{T} \vdash \forall x_0, \dots, x_{n-1} \ [\varphi(x_0, \dots, x_{n-1})]$$

$$\longleftrightarrow \exists z \ ("z \ is \ transitive" \land x_0, \dots, x_{n-1} \in z \land \psi^z(x_0, \dots, x_{n-1}))].$$

Problem 7 (4 points). Let $\varphi(v)$ be the canonical \mathcal{L}_{\in} -formula stating that "v is a strongly inaccessible cardinal".

Given a strongly inaccessible cardinal κ , show that φ is V_{κ} -absolute.

Problem 8 (8 points). Prove Theorem 1.1.17. from the lecture course: Let κ be an uncountable regular cardinal.

- (1) $(\mathsf{ZFC}^-)^{H(\kappa)}$.
- (2) (Collection_{φ})^{$H(\kappa)$} for every \mathcal{L}_{\in} -formula $\varphi(v_0, \ldots, v_{n+1})$.
- (3) The following statements are equivalent:
 - (a) $\mathsf{ZFC}^{H(\kappa)}$.
 - (b) $H(\kappa) = V_{\kappa}$.
 - (c) κ is strongly inaccessible.

Please hand in your solutions on Monday, April 15, before the lecture.