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Die Mengenlehre ist das Fundament
der gesamten Mathematik

(Felix Hausdorff,
Grundzüge der Mengenlehre, 1914 )

1 Introduction

1.1 The origin of set theory
Georg Cantor characterized sets as follows:

Unter einer Menge verstehen wir jede Zusammenfassung M von bestimmten,
wohlunterschiedenen Objekten m unsrer Anschauung oder unseres Denkens
(welche die �Elemente� von M genannt werden) zu einem Ganzen.

Felix Hausdorff in Grundzüge formulated shorter:

Eine Menge ist eine Zusammenfassung von Dingen zu einem Ganzen, d.h. zu
einem neuen Ding.

Sets are ubiquitous in mathematics. According to Hausdorff

Di�erential- und Integralrechnung, Analysis und Geometrie arbeiten in Wirklich-
keit, wenn auch vielleicht in verschleiernder Ausdrucksweise, beständig mit unend-
lichen Mengen.

1.2 Set theoretic foundations of mathematics
In current mathematics, many notions are explicitly de�ned using sets. The following example
indicates that notions which are not set-theoretical prima facie can be construed set-theoretic-
ally:

f is a real funktion � f is a set of ordered pairs (x; y) of real numbers, such
that ... ;
(x; y) is an ordered pair � (x; y) is a set :::fx; yg::: ;
x is a real number � x is a left half of a Dedekind cut in Q � x is a subset of
Q, such that ::: ;

r is a rational number � r is an ordered pair of integers, such that ::: ;
z is an integer � z is an ordered pair of natural numbers (= non-negative
integers);
N= f0; 1; 2; :::g;
0 is the empty set;
1 is the set f0g;
2 is the set f0; 1g; etc. etc.

We shall see that all mathematical notions can be reduced to the notion of set .
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Besides this foundational role, set theory is also the mathematical study of the in�nite. There
are in�nite sets like N; Q; R which can be subjected to the constructions and analyses of set
theory; there are various degrees of in�nity which lead to a rich theory of in�nitary combinat-
orics.
In this course, we shall �rst apply set theory to obtain the standard foundation of mathematics
and then turn towards �pure� set theory.

1.3 The language of set theory
If m is an element of M one writes m 2 M . If all mathematical objects are reducible to sets,
both sides of these relation have to be sets. This means that set theory studies the 2-relation
m 2 M for arbitrary sets m and M . As it turns out, this is su�cient for the purposes of set
theory and mathematics. In set theory variables range over the class of all sets, the 2-relation is
the only unde�ned structural component, every other notion will be de�ned from the 2-relation.
Basically, set theoretical statement will thus be of the form

:::8x:::9y::::::x2 y:::u� v:::;

belonging to the �rst-order predicate language with the only given predicate 2.
To deal with the complexities of set theory and mathematics one develops a comprehensive and
intuitive language of abbreviations and definitions which, eventually, allows to write familiar
statements like

ei�=¡1
and to view them as statements within set theory.
The language of set theory may be seen as a low-level, internal language. The language of math-
ematics possesses high-level �macro� expressions which abbreviate low-level statements in an e�-
cient and intuitive way.

1.4 Russell's paradox
Cantor's naive description of the notion of set suggests that for any mathematical statement
'(x) in one free variable x there is a set y such that

x2 y$ '(x) ;

i.e., y is the collection of all sets x which satisfy ' .
This axiom is a basic principle in Gottlob Frege's Grundgesetze der Arithmetik, 1893 ,
Grundgesetz V, Grundgesetz der Wertverläufe.
Bertrand Russell noted in 1902 that setting '(x) to be x2/ x this becomes

x2 y$ x2/ x ;
and in particular for x= y :

y 2 y$ y 2/ y:
Contradiction.
This contradiction is usually called Russell's paradox, antinomy, contradiction. It was also dis-
coved slightly earlier by Ernst Zermelo. The paradox shows that the formation of sets as col-
lections of sets by arbitrary formulas is not consistent.

2 The Zermelo-Fraenkel Axioms
The di�culties around Russell's paradox and also around the axiom of choice lead Zermelo
to the formulation of axioms for set theory in the spirit of the axiomatics of David Hilbert of
whom Zermelo was an assistant at the time.
Zermelo's main idea was to restrict Frege's Axiom V to formulas which correspond to math-
ematically important formations of collections, but to avoid arbitrary formulas which can lead to
paradoxes like the one exhibited by Russell.
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The original axiom system of Zermelo was extended and detailed by Abraham Fraenkel
(1922), Dmitry Mirimanoff (1917/20), and Thoralf Skolem.
We shall discuss the axioms one by one and simultaneously introduce the logical language and
useful conventions.

2.1 Set Existence
The set existence axiom

9x8y :y 2 x;

like all axioms, is expressed in a language with quanti�ers 9 (�there exists�) and 8 (�for all�),
which is familiar from the �-�-statements in analysis. The language of set theory uses variables
x; y; ::: which may satisfy the binary relations 2 or =: x 2 y (�x is an element of y�) or x = y .
These elementary formulas may be connected by the propositional connectives ^ (�and�), _
(�or�), ! (�implies�), $ (�is equivalent�), and : (�not�). The use of this language will be demon-
strated by the subsequent axioms.
The axiom expresses the existence of a set which has no elements, i.e., the existence of the
empty set .

2.2 Extensionality
The axiom of extensionality

8x8x0(8y(y 2 x$ y 2 x0)!x=x0)

expresses that a set is exactly determined by the collection of its elements. This allows to prove
that there is exactly one empty set.

Lemma 1. 8x8x0(8y :y 2x^8y :y 2 x0!x=x0).

Proof. Consider x; x0 such that 8y :y 2 x^8y :y 2 x0. Consider y . Then :y 2 x and :y 2 x0.
This implies 8y(y 2 x$ y 2 x0). The axiom of extensionality implies x=x0. �

Note that this proof is a usual mathematical argument, and it is also a formal proof in the sense
of mathematical logic. The sentences of the proof can be derived from earlier ones by purely
formal deduction rules. The rules of natural deduction correspond to common sense �gures of
argumentation which treat hypothetical objects as if they would concretely exist.

2.3 Pairing
The pairing axiom

8x8y9z8u(u2 z$u=x_u= y)

postulates that for all sets x; y there is set z which may be denoted as

z= fx; yg:

This formula, including the new notation, is equivalent to the formula

8u(u2 z$u=x_u= y):

In the sequel we shall extend the small language of set theory by hundreds of symbols and con-
ventions, in order to get to the ordinary language of mathematics with notations like

N;R; 385
p

; �;

�
1 0
0 1

�
;

Z
a

b

f 0(x)dx=f(b)¡ f(a); etc:

Such notations are chosen for intuitive, pragmatic, or historical reasons.
Using the notation for unordered pairs, the pairing axiom may be written as

8x8y9z z= fx; yg:
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By the axiom of extensionality, the term-like notation has the expected behaviour. E.g.:

Lemma 2. 8x8y8z8z 0 (z= fx; yg^ z 0= fx; yg!z= z 0).

Proof. Exercise. �

Note that we implicitly use several notational conventions: variables have to be chosen in a reas-
onable way, for example the symbols z and z 0 in the lemma have to be taken di�erent and dif-
ferent from x and y. We also assume some operator priorities to reduce the number of brackets:
we let ^ bind stronger than _, and _ stronger than ! and $.
We used the �term� fx; yg to occur within set theoretical formulas. This abbreviation is than to
be expanded in a natural way, so that o�cially all mathematical formulas are formulas in the
�pure� 2-language. We want to see the notation fx; yg as an example of a class term. We de�ne
uniform notations and convention for such abbreviation terms.

2.4 Class Terms
The extended language of set theory contains class terms and notations for them. There are
axioms for class terms that �x how extended formulas can be reduced to formulas in the unex-
tended 2-language of set theory.

De�nition 3. A class term is of the form fxj'g where x is a variable and ' 2 L2. The usage
of these class terms is de�ned recursively by the following axioms: If fxj'g and fy j g are class
terms then

¡ u 2 fxj'g $ '
u

x
, where 'u

x
is obtained from ' by (resonably) substituting the variable x

by the variable u ;

¡ u= fxj'g$8v (v 2u$ '
v

x
);

¡ fxj'g=u$8v (' v
x
$ v 2u);

¡ fxj'g= fy j g$8v (' v
x
$  

v

y
);

¡ fxj'g2 u$9v(v 2u^ v= fxj'g;

¡ fxj'g2 fy j g$9v( v
y
^ v= fxj'g).

A term is either a variable or a class term.

De�nition 4.

a) ; := fxjx=/ xg is the empty set;

b) V := fxjx=xg is the universe (of all sets);

c) fx; yg := fuju=x_ u= yg is the unordered pair of x and y .

Lemma 5.

a) ;2V.

b) 8x; y fx; yg2V.

Proof. a) By the axioms for the reduction of abstraction terms, ; 2 V is equivalent to the fol-
lowing formulas

9v(v= v ^ v= ;)
9v v= ;
9v 8w (w 2 v$w=/ w)

9v8ww2/ v
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which is equivalent to the axiom of set existence. So ; 2 V is another way to write the axiom of
set existence.
b) 8x; y fx; yg2V abbreviates the formula

8x; y9z(z= z ^ z= fx; yg):

This can be expanded equivalently to the pairing axiom

8x; y9z8u(u2 z$u=x_ u= y): �

So a) and b) are concise equivalent formulations of the axiom Ex and Pair.
We also introduce bounded quanti�ers to simplify notation.

De�nition 6. Let A be a term. Then 8x2A'$8x(x2A! ') and 9x2A'$9x (x2A^ ').

De�nition 7. Let x; y; z; ::: be variables and X;Y ; Z; ::: be class terms. De�ne

a) X �Y $8x2X x2Y, X is a subclass of Y ;

b) X [Y := fxjx2X _ x2Y g is the union of X and Y ;

c) X \Y := fxjx2X ^ x2Y g is the intersection of X and Y ;

d) X nY := fxjx2X ^x2/ Y g is the di�erence of X and Y ;

e)
S
X := fxj9y 2X x2 yg is the union of X ;

f )
T
X := fxj8y 2X x2 yg is the intersection of X ;

g) P(X): =fxjx�Xg is the power class of X;

h) fXg: =fxjx=Xg is the singleton set of X;

i) fX;Y g: =fxjx=X _ x=Y g is the (unordered) pair of X and Y;

j ) fX0; :::; Xn¡1g: =fxjx=X0_ :::_ x=Xn¡1g.

One can prove the well-known boolean properties for these operations. We only give a few
examples.

Proposition 8. X �Y ^Y �X!X =Y.

Proposition 9.
S
fx; yg=x[ y.

Proof. We show the equality by two inclusions:
(�). Let u2

S
fx; yg. 9v(v 2fx; yg^ u2 v). Let v 2fx; yg^ u2 v. (v=x_ v= y)^ u2 v.

Case 1 . v=x. Then u2 x. u2x_u2 y. Hence u2 x[ y.
Case 2 . v= y. Then u2 y. u2 x_ u2 y. Hence u2x[ y.
Conversely let u2x[ y. u2x_u2 y.
Case 1 . u2x. Then x2fx; yg^u2 x. 9v(v 2fx; yg^ u2 v) and u2

S
fx; yg.

Case 2 . u2 y. Then x2fx; yg^u2x. 9v(v 2fx; yg^ u2 v) and u2
S
fx; yg. �

Exercise 1. Show: a)
S
V =V . b)

T
V = ; . c)

S
;= ; . d)

T
;=V .

2.5 Ordered Pairs
Combining objects into ordered pairs (x; y) is taken as an unde�ned fundamental operation of
mathematics. We cannot use the unordered pair fx; yg for this purpose, since it does not
respect the order of entries:

fx; yg= fy; xg:

We have to introduce some asymmetry between x and y to make them distinguishable. Fol-
lowing Kuratowski and Wiener we de�ne:

The Zermelo-Fraenkel Axioms 5



De�nition 10. (x; y): =ffxg; fx; ygg is the ordered pair of x and y.

The de�nition involves substituting class terms within class terms. We shall see in the following
how these class terms are eliminated to yield pure 2-formulas.

Lemma 11. 8x8y9z z=(x; y).

Proof. Consider sets x and y. By the pairing axiom choose u and v such that u= fxg and v =
fx; yg. Again by pairing choose z such that z= fu; vg. We argue that z=(x; y). Note that
(x; y)= ffxg; fx; ygg= fw jw= fxg_w= fx; ygg.
Then z=(x; y) is equivalent to
8w(w2 z$w= fxg_w= fx; yg),
8w(w=u_w= v$ (w= fxg_w= fx; yg),
and this is true by the choice of u and v. �

The Kuratowski-pair satis�es the fundamental property of ordered pairs:

Lemma 12. (x; y)= (x0; y 0)!x=x0^ y= y 0.

Proof. Assume (x; y)= (x0; y 0), i.e.,
(1) ffxg; fx; ygg= ffx0g; fx0; y 0gg.
Case 1 . x= y. Then
fxg= fx; yg,
ffxg; fx; ygg= ffxg; fxgg= ffxgg,
ffxgg= ffx0g; fx0; y 0gg,
fxg= fx0g and x=x0,
fxg= fx0; y 0g and y 0=x.
Hence x=x0 and y=x= y 0 as required.
Case 2 . x=/ y. (1) implies
fx0g= fxg or fx0g= fx; yg.
The right-hand side would imply x=x0= y, contradicting the case assumption. Hence
fx0g= fxg and x0=x.
Then (1) implies
fx; yg= fx0; y 0g= fx; y 0g and y= y 0. �

Exercise 2.

a) Show that hx; yi := ffx; ;g; fy; f;ggg also satis�es the fundamental property of ordered pairs (F.
Hausdorff).

b) Can fx; fy; ;gg be used as an ordered pair?

Exercise 3. Give a set-theoretical formalization of an ordered-triple operation.

2.6 Relations and Functions
Ordered pairs allow to introduce relations and functions in the usual way. One has to distin-
guish between sets which are relations and functions, and class terms which are relations and
functions.

De�nition 13. A term R is a relation if all elements of R are ordered pairs, i.e., R � V � V.
Also write Rxy or xRy instead of (x; y) 2 R . If A is a term and R � A � A then R is a rela-
tion on A.

Note that this de�nition is really an in�nite schema of de�nitions, with instances for all terms R
and A . The subsequent extensions of our language are also infinite definition schemas. We
extend the term language by parametrized collections of terms.

De�nition 14. Let t(x~ ) be a term in the variables x~ and let ' be an 2-formula. Then ft(x~ )j'g
stands for fz j9x~ ('^ z= t(x~ )g.
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De�nition 15. Let R;S;A be terms.

a) The domain of R is dom(R) := fx j9yxRyg.

b) The range of R is ran(R) := fy j9xxRyg.

c) The �eld of R is �eld(R) :=dom(R)[ ran(R).

d) The restriction of R to A is R �A := f(x; y)jxRy^x2Ag.
e) The image of A under R is R[A] :=R00A := fy j9x2AxRyg.

f ) The preimage of A under R is R¡1[A] := fxj9y 2AxRyg.

g) The composition of S and R (�S after R�) is S �R := f(x; z)j9y (xRy^ySz)g.

h) The inverse of R is R¡1: =f(y; x)jxRyg.

Relations can play di�erent roles in mathematics.

De�nition 16. Let R be a relation.

a) R is re�exive i� 8x2�eld(R) xRx .

b) R is irre�exive i� 8x2�eld(R) :xRx .

c) R is symmetric i� 8x; y (xRy!yRx).

d) R is antisymmetric i� 8x; y (xRy ^ yRx!x= y).

e) R is transitive i� 8x; y; z (xRy^yRz!xRz).

f ) R is connex i� 8x; y 2 �eld(R) (xRy _ yRx_x= y).

g) R is an equivalence relation i� R is re�exive, symmetric and transitive.

h) Let R be an equivalence relation. Then [x]R : =fy jyRxg is the equivalence class of x
modulo R .

It is possible that an equivalence class [x]R is not a set: [x]R2/ V . Then the formation of the col-
lection of all equivalence classes modulo R may lead to contradictions. Another important
family of relations is given by order relations.

De�nition 17. Let R be a relation.

a) R is a partial order i� R is re�exive, transitive and antisymmetric.

b) R is a linear order i� R is a connex partial order.

c) Let A be a term. Then R is a partial order on A i� R is a partial order and �eld(R) =
A .

d) R is a strict partial order i� R is transitive and irre�exive.

e) R is a strict linear order i� R is a connex strict partial order.

Partial orders are often denoted by symbols like 6, and strict partial orders by <. A common
notation in the context of (strict) partial orders R is to write

9pRq' and 8pRq' for 9p(pRq ^ ') and 8p(pRq!') resp.

One of the most important notions in mathematics is that of a function.

De�nition 18. Let F be a term. Then F is a function if it is a relation which satis�es

8x; y; y 0 (xFy^xFy 0!y= y 0):

If F is a function then

F (x): =fuj8y (xFy!u2 y)g
is the value of F at x.
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If F is a function and xFy then y=F (x). If there is no y such that xFy then

F (x)=
\
xFy

y=
\
;=V :

The �value� V at x may be read as �undefined�. A function can also be considered as the
(indexed) sequence of its values, and we also write

(F (x))x2A or (Fx)x2A instead of F :A!V :

We de�ne further notions associated with functions.

De�nition 19. Let F ;A;B be terms.

a) F is a function from A to B, or F : A ! B, iff F is a function, dom(F ) = A, and
range(F )�B .

b) F is a partial function from A to B, or F : A* B, i� F is a function, dom(F ) � A, and
range(F )�B .

c) F is a surjective function from A to B i� F :A!B and range(F )=B.

d) F is an injective function from A to B i� F :A!B and

8x; x02A (x=/ x0!F (x) =/ F (x0))

e) F is a bijective function from A to B, or F : A $ B, i� F : A ! B is surjective and
injective.

f ) AB: =ff jf :A!Bg is the class of all functions from A to B.

One can check that these functional notions are consistent and agree with common usage:

Exercise 4. De�ne a relation � on V by

x� y !9f f : x$ y:

One say that x and y are equinumerous or equipollent. Show that � is an equivalence relation on V . What is
the equivalence class of ; ? What is the equivalence class of f;g ?

Exercise 5. Consider functions F :A!B and F 0:A!B. Show that

F =F 0 i� 8a2A F (a) =F 0(a):

2.7 Unions
The union axiom reads

8x9y8z(z 2 y$9w(w 2x^ z 2w)):

Lemma 20. The union axiom is equivalent to 8x
S
x2V.

Proof. Observe the following equivalences:
8x
S
x2V

$8x9y (y= y ^ y=
S
x)

$8x9y8z(z 2 y$ z 2
S
x)

$8x9y8z(z 2 y$9w2 x z 2w)
which is equivalent to the union axiom. �

Note that the union of x is usually viewed as the union of all elements of x:[
x=

[
w2x

w ;

where we de�ne [
a2A

t(a)= fz j9a2Az 2 t(a)g:

Graphically
S
x can be illustrated like this:
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x
[x

Combining the axioms of pairing and unions we obtain:

Lemma 21. 8x0; :::; xn¡1 fx0; :::; xn¡1g2V .

Note that this is a schema of lemmas, one for each ordinary natural number n . We prove the
schema by complete induction on n .

Proof. For n= 0; 1; 2 the lemma states that ; 2 V , 8x fxg 2 V , and 8x; y fx; yg 2 V resp., and
these are true by previous axioms and lemmas. For the induction step assume that the lemma
holds for n , n> 1. Consider sets x0; :::; xn . Then

fx0; :::; xng= fx0; :::; xn¡1g[fxng:

The right-hand side exists in V by the inductive hypothesis and the union axiom. �

Remark 22. We are developing the axiom systems ZF and ZFC. These will be infinite
schemas, lists, or sets of formulas. These schemas are formulated in the common mathematical
language, which is able to speak about formulas, in particular 2-formulas, and is also able to
speak about in�nite collections of formulas. If we assume in�nitely many axioms, it should also
be possible to conclude infinitely many consequences, like the above Lemma: 8x0; :::;
xn¡1 fx0; :::; xn¡1g2 V . We view the common mathematical language as a meta language which
is able to speak about an object language like the language of set theory. The meta language has
common mathematical tools available. For example induction and recursion on the common nat-
ural numbers, to perform the recursion in the previous schema of lemmas. We shall approach
the problem of meta theory versus object theory in an informal naive way.

2.8 Separation
It is common to form a subset of a given set consisting of all elements which satisfy some condi-
tion. This is codi�ed by the separation schema. For every 2-formula '(z; x1; :::; xn) postulate:

8x1:::8xn8x9y8z (z 2 y$z 2 x^ '(z; x1; :::; xn)):

Using class terms the schema can be reformulated as: for every term A postulate

8xA\x2V :
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The crucial point is the restriction to the given set x . The unrestricted, Fregean version A2 V
for every term A leads to the Russell antinomy. We turn the antinomy into a consequence of
the separation schema:

Theorem 23. V 2/ V.

Proof. Assume that V 2 V . Then 9xx= V . Take x such that x= V . Let R be the Russellian
class:

R: =fxjx2/ xg:

By separation, y :=R\x2V . Note that R\x=R\V =R . Then

y 2 y$y 2R$y2/ y ;
contradiction. �

This simple but crucial theorem leads to the distinction:

De�nition 24. Let A be a term. Then A is a proper class i� A2/ V.

Set theory deals with sets and proper classes. Sets are the favoured objects of set theory, the
axioms mainly state favorable properties of sets and set existence. Sometimes one says that a
term A exists if A 2 V . The intention of set theory is to construe important mathematical
classes like the collection of natural and real numbers as sets so that they can be treated set-the-
oretically. Zermelo observed that this is possible by requiring some set existences together
with the restricted separation principle.

Exercise 6. Show that the class ffxgjx2V g of singletons is a proper class.

2.9 Power Sets
The power set axiom in class term notation is

8xP(x)2V :

The power set axiom yields the existence of function spaces.

De�nition 25. Let A;B be terms. Then

A�B: =f(a; b)ja2A^ b2Bg

is the cartesian product of A and B.

Exercise 7.

By the speci�c implementation of Kuratowski ordered pairs:

Lemma 26. A�B �P(P(A[B)).

Proof. Let (a; b)2A�B. Then

a; b 2 A[B
fag; fa; bg � A[B
fag; fa; bg 2 P(A[B)

(a; b) = ffag; fa; bgg � P(A[B)
(a; b) = ffag; fa; bgg 2 P(P(A[B))

�

Theorem 27.

a) 8x; y x� y 2V.
b) 8x; y xy 2V.
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Proof. Let x; y be sets. a) Using the axioms of pairing, union, and power sets, P(P(x[ y))2V .
By the previous lemma and the axiom schema of separation,

x� y=(x� y)\P(P(x[ y))2V :

b) xy�P(x� y) since a function f :x! y is a subset of x� y . By the separation schema,

xy=x y\P(x� y)2V : �

Note that to ��nd� the sets in this theorem one has to apply the power set operation repeatedly.
We shall see that the universe of all sets can be obtained by iterating the power set operation.
The power set axiom leads to higher cardinalities. The theory of cardinalities will be developed
later, but we can already prove Cantor's theorem:

Theorem 28. Let x2V.
a) There is an injective map f :x!P(x).
b) There does not exist an injective map g:P(x)!x .

Proof. a) De�ne the map f :x!P(x) by u 7! fug. This is a set since

f = f(u; fug)ju2xg�x�P(x)2V :

f is injective: let u; u02x, u=/ u0. By extensionality,

f(u)= fug=/ fu0g= f(u0):

b) Assume there were an injective map g:P(x)! x . De�ne the Cantorean set

c= fuju2 x^u2/ g¡1(u)g2P (x)

similar to the class R in Russell's paradox.
Let u0= g(c). Then g¡1(u0) = c and

u02 c$u02/ g¡1(u0) = c:
Contradiction. �

2.10 Replacement
If every element of a set is de�nably replaced by another set, the result is a set again. The
schema of replacement postulates for every term F :

F is a function !8xF [x]2V :

Lemma 29. The replacement schema implies the separation schema.

Proof. Let A be a term and x2V .
Case 1 . A\x= ; . Then A\ x2V by the axiom of set existence.
Case 2 . A\x=/ ; . Take u02A\ x . De�ne a map F :x!x by

F (u)=

�
u , if u2A\x
u0 , else

Then by replacement

A\x=F [x]2V
as required. �

2.11 In�nity
All the axioms so far can be realized in a domain of �nite sets, see exercise 12. The true power
of set theory is set free by postulating the existence of one in�nite set and continuing to assume
the axioms. The axiom of in�nity expresses that the set of �natural numbers� exists. To this
end, some �number-theoretic� notions are de�ned.

The Zermelo-Fraenkel Axioms 11



De�nition 30.

a) 0:=; is the number zero.

b) For any term t, t+1:=t[ftg is the successor of t.

These notions are reasonable in the later formalization of the natural numbers. The axiom of
in�nity postulates the existence of a set which contains 0 and is closed under successors

9x (02x^8n2 x n+12 x):

Intuitively this says that there is a set which contains all natural numbers. Let us de�ne set-the-
oretic analogues of the standard natural numbers:

De�nition 31. De�ne

a) 1:=0+1;

b) 2:=1+1;

c) 3:=2+1; ...

From the context it will be clear, whether �3�, say, is meant to be the standard number �three�
or the set theoretical object

3 = 2[f2g
= (1+1)[f1+ 1g
= (f;g[ff;gg)[ff;g[ff;ggg
= f;; f;g; f;g[ ff;ggg:

The set-theoretic axioms will ensure that this interpretation of �three� has the important
number-theoretic properties of �three�.

2.12 Foundation
The axiom schema of foundation provides structural information about the set theoretic uni-
verse V . It can be reformulated by postulating, for any term A :

A=/ ;!9x2AA\ x= ; :

Viewing 2 as some kind of order relation this means that every non-empty class has an 2-min-
imal element x 2 A such that the 2-predecessors of x are not in A. Foundation excludes circles
in the 2-relation:

Lemma 32. Let n be a natural number >1 . Then there are no x0; :::; xn¡1 such that

x02x12 :::2 xn¡12 x0 :

Proof. Assume not and let x02x12 :::2 xn¡12 x0 . Let

A= fx0; :::; xn¡1g:

A=/ ; since n> 1 . By foundation take x2A such that A\x= ; .
Case 1 . x=x0 . Then xn¡12A\ x= ; , contradiction.
Case 2 . x=xi , i > 0 . Then xi¡12A\ x= ; , contradiction. �

Exercise 8. Show that x=/ x+1 .

Exercise 9. Show that the successor function x 7!x+1 is injective.

Exercise 10. Show that the term fx; fx; ygg may be taken as an ordered pair of x and y .

Theorem 33. The foundation scheme is equivalent to the following, Peano-type, induction
scheme: for every term B postulate

8x (x�B!x2B)!B=V :
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This says that if a �property� B is inherited by x if all elements of x have the property B, then
every set has the property B.

Proof. (!) Assume B were a term which did not satisfy the induction principle:

8x (x�B! x2B) and B=/ V :

Set A=V nB=/ ; . By foundation take x2A such that A\x= ; . Then

u2x!u2/ A!u2B ;

i.e., x�B . By assumption, B is inherited by x : x2B . But then x2/ A , contradiction.
( ) Assume A were a term which did not satisfy the foundation scheme:

A=/ ; and 8x2AA\x=/ ; :

Set B = V n A . Consider x � B . Then A \ x = ; . By assumption, x 2/ A and x 2 B . Thus
8x (x�B!x2B). The induction principle implies that B=V . Then A= ;, contradiction. �

This proof shows, that the induction principle is basically an equivalent formulation of the
foundation principle. The 2-relation is taken as some binary relation without reference to spe-
ci�c properties of this relation. This leads to:

Exercise 11. A relation R on a domain D is called wellfounded, i� for all terms A

;=/ A^A�D!9x2A A\fy jyRxg= ;:

Formulate and prove a principle for R-induction on D which coressponds to the assumption that R is well-
founded on D.

2.13 Set Theoretic Axiom Schemas
Note that the axiom system introduced is an in�nite informal set of axioms. It seems unavoid-
able that we have to go back to some previously given set notions to be able to de�ne the collec-
tion of set theoretical axioms - another example of the frequent circularity in foundational the-
ories.

De�nition 34. The system ZF of the Zermelo-Fraenkel axioms of set theory consists of the
following axioms:

a) The set existence axiom (Ex):

9x8y:y 2x

- there is a set without elements, the empty set.

b) The axiom of extensionality (Ext):

8x8y(8z(z 2 x$ z 2 y)! x= y)

- a set is determined by its elements, sets having the same elements are identical.

c) The pairing axiom (Pair):

8x8y9z8w (u2 z$u=x_ u= y):

- z is the unordered pair of x and y.

d) The union axiom (Union):

8x9y8z(z 2 y$9w(w 2x^ z 2w))

- y is the union of all elements of x.

e) The separation schema (Sep) postulates for every 2-formula '(z; x1; :::; xn):

8x1:::8xn8x9y8z (z 2 y$z 2x^ '(z; x1; :::; xn))

The Zermelo-Fraenkel Axioms 13



- this is an in�nite scheme of axioms, the set z consists of all elements of x which satisfy
'.

f ) The powerset axiom (Pow):

8x9y8z(z 2 y$8w(w 2 z!w 2x))
- y consists of all subsets of x.

g) The replacement schema (Rep) postulates for every 2-formula '(x; y; x1; :::; xn):

8x1:::8xn(8x8y8y 0(('(x; y; x1; :::; xn)^ '(x; y 0; x1; :::; xn))! y= y 0)!
8u9v8y (y 2 v$9x(x2u^ '(x; y; x1; :::; xn))))

- v is the image of u under the map de�ned by '.

h) The axiom of in�nity (Inf):

9x(9y (y 2x^8z:z 2 y)^8y(y 2x!9z(z 2 x^8w(w 2 z$w 2 y _w= y))))

- by the closure properties of x, x has to be in�nite.

i) The foundation schema (Found) postulates for every 2-formula '(x; x1; :::; xn):

8x1:::8xn(9x'(x; x1; :::; xn)!9x('(x; x1; :::; xn)^8x0(x02x!:'(x0; x1; :::; xn))))

- if ' is satis�able then there are 2-minimal elements satisfying '.

2.14 ZF in Class Notation
Using class terms, the ZF can be formulated concisely:

Theorem 35. The ZF axioms are equivalent to the following system; we take all free variables
of the axioms to be universally quanti�ed:

a) Ex: ;2V.

b) Ext: x� y ^ y�x!x= y .

c) Pair: fx; yg2V.

d) Union:
S
x2V.

e) Sep: A\x2V.

f ) Pow: P(x)2V.

g) Rep: F is a function !F [x]2V.

h) Inf: 9x (02x^8n2 x n+12 x).

i) Found: A=/ ;!9x2AA\x= ; .

This axiom system can be used as a foundation for all of mathematics. Axiomatic set theory
considers various axiom systems of set theory.

De�nition 36. The axiom system ZF¡ consists of the ZF-axioms except the power set axiom.
The axiom System ST (�set theory�) onsists of the ZF-axioms except the axiom of in�nity. The
system EML (�elementary set theory�) consists of the axioms Ex, Ext, Pair, and Union.

Exercise 12. Consider the axiom system HF consisting of the axioms of EML together with the induction
principle: for every term B postulate

8x; y (x�B ^ y 2B! x[fyg 2B)!B=V :

Show that every axiom of ZF except Inf is provable in HF, and that HF proves the negation of Inf (HF axio-
matizes the heriditarily finite sets, i.e., those sets such that the set itself and all its iterated elements are
�nite).
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3 Ordinal Numbers

We had de�ned some �natural numbers� in set theory. Recall that

0 = ;
1 = 0+1=0[f0g = f0g
2 = 1+1=1[f1g = f0; 1g
3 = 2+1=2[f2g = f0; 1; 2g
���

We would then like to have N = f0; 1; 2; 3; :::g. To obtain a set theoretic formalization of num-
bers we note some properties of the informal presentation:

1. �Numbers� are ordered by the 2-relation:
m<n i� m2n:

E.g., 12 3 but not 32 1.
2. On each �number�, the 2-relation is a strict linear order : 3 = f0; 1; 2g is strictly linearly

ordered by 2.
3. �Numbers� are �complete� with respect to smaller �numbers�

i < j <m! i2m:

This can be written with the 2-relation as

i2 j 2m! i2m:

De�nition 37.

a) A is transitive, Trans(A), i� 8y 2A8x2 yx2A .

b) x is an ordinal (number), Ord(x), if Trans(x)^8y 2 xTrans(y).
c) Let Ord: =fxjOrd(x)g be the class of all ordinal numbers.

We shall use small greek letter �; �; ::: as variables for ordinals. So 9�' stands for 9� 2 Ord ',
and f�j'g for f�jOrd(�)^ 'g.

Exercise 13. Show that arbitrary unions and intersections of transitive sets are again transitive.

We shall see that the ordinals extend the standard natural numbers. Ordinals are particularly
adequate for enumerating in�nite sets.

Theorem 38.

a) 02Ord.

b) 8� �+12Ord .

Proof. a) Trans(;) since formulas of the form 8y 2 ;::: are tautologously true. Similarly 8y 2
; Trans(y).
b) Assume �2Ord.
(1) Trans(�+1).
Proof . Let u2 v 2�+1=�[f�g.
Case 1 . v 2�. Then u2���+1, since � is transitive.
Case 2 . v=�. Then u2���+1. qed(1)
(2) 8y 2�+1Trans(y).
Proof . Let y 2�+1=�[f�g.
Case 1 . y 2�. Then Trans(y) since � is an ordinal.
Case 2 . y=�. Then Trans(y) since � is an ordinal. �

Exercise 14.

a) Let A�Ord be a term, A=/ ; . Then
T
A2Ord.
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b) Let x�Ord be a set. Then
S
x2Ord .

Theorem 39. Trans(Ord).

Proof. This follows immediately from the transitivity de�nition of Ord. �

Exercise 15. Show that Ord is a proper class. (Hint: if Ord2V then Ord2Ord.)

Theorem 40. The class Ord is strictly linearly ordered by 2, i.e.,
a) 8�; �; 
 (�2 � ^ � 2 
!�2 
).
b) 8� �2/ �.
c) 8�; � (�2 � _�= � _ � 2�).

Proof. a) Let �; �; 
 2Ord and �2 � ^ � 2 
. Then 
 is transitive, and so �2 
.
b) follows immediately from the non-circularity of the 2-relation.
c) Assume that there are �incomparable� ordinals. By the foundation schema choose �02Ord 2-
minimal such that 9�:(�02 � _�0= � _ � 2�0). Again, choose �02Ord 2-minimal such that :
(�02 �0_�0= �0_ �02�0). We obtain a contradiction by showing that �0= �0:
Let � 2 �0 . By the 2-minimality of �0 , � is comparable with �0 : � 2 �0 _ � = �0 _ �0 2 � . If
�= �0 then �02�0 and �0; �0 would be comparable, contradiction. If �02� then �02�0 by the
transitivity of �0 and again �0; �0 would be comparable, contradiction. Hence �2 �0 .
For the converse let � 2 �0 . By the 2-minimality of �0 , � is comparable with �0 : � 2 �0 _ � =
�0 _ �0 2 � . If � = �0 then �0 2 �0 and �0; �0 would be comparable, contradiction. If �0 2 �
then �0 2 �0 by the transitivity of �0 and again �0; �0 would be comparable, contradiction.
Hence � 2�0 .
But then �0= �0 contrary to the choice of �0 . �

De�nition 41. Let <: =2\(Ord�Ord) = f(�; �)j� 2 �g be the natural strict linear ordering of
Ord by the 2-relation.

Theorem 42. Let �2Ord. Then �+1 is the immediate successor of � in the 2-relation:
a) �<�+1;

b) if � <�+1, then �=� or � <�.

De�nition 43. Let � be an ordinal. � is a successor ordinal, Succ(�), i� 9� �= � +1 . � is a
limit ordinal, Lim(�), i� �=/ 0 and � is not a successor ordinal. Also let

Succ: =f�jSucc(�)g and Lim := f�jLim(�)g:

The existence of limit ordinals will be discussed together with the formalization of the natural
numbers.

3.1 Ordinal induction
Ordinals satisfy an induction theorem which generalizes complete induction on the integers:

Theorem 44. Let '(x; v0; :::; vn¡1) be an 2-formula and x0; :::; xn¡1 2 V. Assume that the
property '(x; x0; :::; xn¡1) is inductive, i.e.,

8�(8� 2� '(�; x0; :::; xn¡1)! '(�; x0; :::; xn¡1)):

Then ' holds for all ordinals:

8�'(�; x0; :::; xn¡1):

Proof. It su�ces to show that

B= fxjx2Ord! '(x; x0; :::; xn¡1)g=V :
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Theorem 33 implies

8x (x�B!x2B)!B=V

and it su�ces to show

8x (x�B!x2B):

Consider x � B. If x 2/ Ord then x 2B. So assume x 2 Ord. For � 2 x we have � 2 B, � 2 Ord,
and so '(�; x0; :::; xn¡1). By the inductivity of ' we get '(x; x0; :::; xn¡1) and again x2B. �

Induction can be formulated in various forms:

Exercise 16. Prove the following trans�nite induction principle: Let '(x) = '(x; v0; :::; vn¡1) be an 2-for-
mula and x0; :::; xn¡12V . Assume

a) '(0) (the initial case),

b) 8� ('(�)! '(�+1)) (the successor step),

c) 8�2Lim (8�<�'(�)!'(�)) (the limit step).

Then 8�'(�).

3.2 Natural Numbers
We have 0; 1; ::: 2 Ord. We shall now de�ne and study the set of natural numbers/integers
within set theory. Recall the axiom of in�nity:

9x (02 x^8u2x u+12 x):

The set of natural numbers should be the �-smallest such x.

De�nition 45. Let !=
T
fxj02 x^8u2 x u+12 xg be the set of natural numbers. Sometimes

we write N instead of !.

Theorem 46.

a) ! 2V.
b) ! �Ord.

c) (!; 0;+1) satisfy the second order Peano axiom, i.e.,

8x�! (02 x^8n2x n+12x!x=!):

d) ! 2Ord.

e) ! is a limit ordinal.

Proof. a) By the axiom of in�nity take a set x0 such that

02x0^8u2 x0 u+12x0 :
Then

!=
\
fxj02 x^8u2x u+12 xg=x0\

\
fxj02 x^8u2x u+12 xg2V

by the separation schema.
b) By a), ! \Ord 2 V . Obviously 02 ! \Ord ^ 8u 2 ! \Ord u+ 12 ! \Ord. So ! \Ord is one
factor of the intersection in the de�nition of ! and so !�! \Ord . Hence ! �Ord .
c) Let x � ! and 0 2 x ^ 8u 2 x u + 1 2 x. Then x is one factor of the intersection in the de�ni-
tion of ! and so !�x . This implies x=!.
d) By b), every element of ! is transitive and it su�ces to show that ! is transitive. Let

x= fnjn2! ^8m2n m2!g�!:

We show that the hypothesis of c) holds for x. 0 2 x is trivial. Let u 2 x. Then u + 1 2 !. Let
m 2 u+ 1. If m 2 u then m 2 ! by the assumption that u 2 x. If m= u then m 2 x � !. Hence
u+12x and 8u2 x u+12 x. By b), x=!. So 8n2!n2x , i.e.,

8n2!8m2n m2!:
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e) Of course ! =/ 0 . Assume for a contradiction that ! is a successor ordinal, say ! = � + 1 .
Then �2! . Since ! is closed under the +1-operation, !=�+12! . Contradiction. �

Thus the axiom of in�nity implies the existence of the set of natural numbers, which is also the
smallest limit ordinal. The axiom of in�nity can now be reformulated equivalently as:
h) Inf: ! 2V .

3.3 Ordinal recursion
Recursion, often called induction, over the natural numbers is a ubiquitous method for de�ning
mathematical objects. We prove the following recursion theorem for ordinals.

Theorem 47. Let G: V ! V. Then there is a canonical class term F, given by the subsequent
proof, such that

F :Ord!V and 8� F (�)=G(F ��):

We then say that F is defined recursively (over the ordinals) by the recursion rule G. F is
unique in the sense that if another term F 0 satis�es

F 0:Ord!V and 8� F 0(�)=G(F 0 ��)
then F =F 0.

Proof. We say that H: dom(H)!V is G-recursive if

dom(H)�Ord ; dom(H) is transitive, and 8�2dom(H)H(�) =G(H ��):

(1) Let H; H 0 be G-recursive. Then H; H 0 are compatible, i.e., 8� 2 dom(H) \ dom(H 0) H(�) =
H 0(�).
Proof . We want to show that

8�2Ord (�2dom(H)\ dom(H 0)!H(�)=H 0(�)):

By the induction theorem it su�ces to show that � 2 dom(H) \ dom(H 0) !H(�) = H 0(�) is
inductive, i.e.,

8� 2Ord (8y 2 � (y 2 dom(H) \ dom(H 0)!H(y) =H 0(y))! (� 2 dom(H) \ dom(H 0)!H(�) =

H 0(�))):

So let �2Ord and 8y 2� (y 2 dom(H)\ dom(H 0)!H(y)=H 0(y)). Let �2 dom(H)\ dom(H 0).
Since dom(H) and dom(H 0) are transitive, ��dom(H) and �� dom(H 0). By assumption

8y 2� H(y)=H 0(y):

Hence H ��=H 0 ��. Then
H(�)=G(H ��)=G(H 0 ��)=H 0(�):

qed(1)
Let

F : =
[
ff jf is G-recursiveg:

be the union of the class of all approximations to the desired function F .
(2) F is G-recursive.
Proof . By (1), F is a function. Its domain dom(F ) is the union of transitive classes of ordinals
and hence dom(F )�Ord is transitive.
Let � 2 dom(F ). Take some G-recursive functionf such that � 2 dom(f). Since dom(f) is trans-
itive, we have

�� dom(f)�dom(F ):

Moreover

F (�)= f(�)=G(f ��) =G(F ��):
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qed(2)
(3) 8� �2dom(F ).
Proof . By induction on the ordinals. We have to show that � 2 dom(F ) is inductive in the vari-
able �. So let �2Ord and 8y 2� y 2dom(F ). Hence �� dom(F ). Let

f =F ��[f(�;G(F ��))g:

f is a function with dom(f)=�+12Ord. Let �0<�+1. If �0<� then

f(�0)=F (�0)=G(F ��0)=G(f ��0):
if �0=� then also

f(�0)= f(�) =G(F ��)=G(f ��) =G(f ��0):

Hence f is G-recursive and �2dom(f)� dom(F ). qed(3)
The extensional uniqueness of F follows from (1) �

Theorem 48. Let a0 2 V, Gsucc:Ord� V ! V, and Glim:Ord� V ! V. Then there is a canonic-
ally de�ned class term F :Ord!V such that

a) F (0)= a0 ;

b) 8�F (�+1)=Gsucc(�; F (�));

c) 8�2Lim F (�)=Glim(�; F ��).
Again F is unique in the sense that if some F 0 also satis�es a)-c) then F =F 0.
We say that F is recursively de�ned by the properties a)-c).

Proof. We incorporate a0 , Gsucc , and Glim into a single recursion rule G:V !V ,

G(f) =

8>>>>>><>>>>>>:
a0 , if f = ;;
Gsucc(�; f(�)) , if f :�+1! V ;
Glim(�; f) , if f :�!V and Lim(�);
; , else:

Then the term F :Ord!V de�ned recursively by the recursion rule G satis�es the theorem. �

In many cases, the limit rule will just require to form the union of the previous values so that

F (�) =
[
�<�

F (�):

Such recursions are called continuous (at limits).

3.4 Ordinal Arithmetic
We extend the recursion rules of standard integer arithmetic continuously to obtain trans�nite
version of the arithmetic operations. The initial operation of ordinal arithmetic is the +1-opera-
tion de�ned before. Ordinal arithmetic satis�es some but not all laws of integer arithmetic.

De�nition 49. De�ne ordinal addition +:Ord�Ord!Ord recursively by

�+0 = �

�+(�+1) = (�+�) +1

�+� =
[
�<�

(�+�) , for limit ordinals �

De�nition 50. De�ne ordinal multiplication � :Ord�Ord!Ord recursively by

� � 0 = 0

� � (�+1) = (� ��)+ �
� �� =

[
�<�

(� ��) , for limit ordinals �
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De�nition 51. De�ne ordinal exponentiation __ :Ord�Ord!Ord recursively by

�0 = 1

��+1 = �� � �
�� =

[
�<�

�� , for limit ordinals �

Exercise 17. Explore which of the standard ring axioms hold for the ordinals with addition and multiplica-
tion. Give proofs and counterexamples.

Exercise 18. Show that for any ordinal � , � + ! is a limit ordinal. Use this to show that the class Lim of
all limit ordinals is a proper class.

4 Number Systems

We are now able to give set-theoretic formalizations of the standard number systems with their
arithmetic operations.

4.1 Natural Numbers

De�nition 52. The structure

N: =(!;+�(!�!); ��(!�!); <�(!�!); 0; 1)

is called the structure of natural numbers, or arithmetic. We sometimes denote this structure
by

N: =(!;+; �; <; 0; 1):

N is an adequate formalization of arithmetic within set theory since N satis�es all standard
arithmetical axioms.

Exercise 19. Prove:

a) + [!�!] := fm+njm2!^n2!g�! .

b) � [!�!] := fm �njm2!^n2!g�! .

c) Addition and multiplication are commutative on ! .

d) Addition and multiplication satisfy the usual monotonicity laws with respect to <.

De�nition 53. We de�ne the structure

Z := (Z;+Z; �Z; <Z; 0Z; 1Z)

of integers as follows:

a) De�ne an equivalence relation � on N�N by

(a; b)� (a0; b0) i� a+ b0= a0+ b:

b) Let a¡ b: =[(a; b)]� be the equivalence class of (a; b) in �. Note that every a¡ b is a set.

c) Let Z: =fa¡ bja2N^ b2Ng be the set of integers.

d) De�ne the integer addition +Z:Z�Z!Z by

(a¡ b)+Z (a0¡ b 0) := (a+ a0)¡ (b+ b 0):

e) De�ne the integer multiplication �Z:Z�Z!Z by

(a¡ b) �Z (a0¡ b 0) := (a � a0+ b � b0)¡ (a � b0+ a0 � b):
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f ) De�ne the strict linear order <Z on Z by

(a¡ b)<Z (a0¡ b 0) i� a+ b 0<a0+ b:

g) Let 0Z: =0¡ 0 and 1Z: =1¡ 0.

Exercise 20. Check that the above de�nitions are sound, i.e., that they do not depend on the choice of rep-
resentatives of equivalence classes.

Exercise 21. Check that Z satis�es (a su�cient number) of the standard axioms for rings.

The structure Z extends the structure N in a natural and familiar way: de�ne an injective map
e:N!Z by

n 7!n¡ 0:
The embedding e is a homomorphism:

a) e(0)= 0¡ 0=0Z and e(1)= 1¡ 0= 1Z;

b) e(m+n)= (m+n)¡ 0= (m+n)¡ (0+0)= (m¡ 0)+Z (n¡ 0)= e(m)+Z e(n);

c) e(m �n) = (m �n)¡ 0= (m �n+0 � 0)¡ (m � 0+n � 0)= (m¡ 0) �Z (n¡ 0)= e(m) �Z e(n);

d) m<n$m+0<n+0$ (m¡ 0)<Z (n¡ 0)$e(m)<Z e(n).

By this injective homomorphism, one may consider N as a substructure of Z : N�Z .

4.2 Rational Numbers

De�nition 54. We de�ne the structure

Q0
+ := (Q0

+;+Q; �Q; <Q; 0Q; 1Q)

of non-negative rational numbers as follows:

a) De�ne an equivalence relation w on N� (N n f0g) by

(a; b)w (a0; b 0) i� a � b 0= a0 � b:

b) Let a

b
: =[(a; b)]' be the equivalence class of (a; b) in '. Note that a

b
is a set.

c) Let Q0
+: =fa

b
ja2N^ b2 (N n f0g)g be the set of non-negative rationals.

d) De�ne the rational addition +Q:Q0
+�Q0

+!Q0
+ by

a
b
+Q a0

b 0
:=

a � b 0+ a0 � b
b � b0 :

e) De�ne the rational multiplication �Q:Q0
+�Q0

+!Q0
+ by

a
b
�Q a0

b0
:=

a � a0
b � b0 :

f ) De�ne the strict linear order <Q on Q0
+ by

a

b
<Q a0

b0
i� a � b 0<a0 � b:

g) Let 0Q: =0

1
and 1Q: =

1

1
.

Again one can check the soundness of the de�nitions and the well-known laws of standard non-
negative rational numbers. Also one may assume N to be embedded into Q0

+ as a substructure.
The transfer from non-negative to all rationals, including negative rationals can be performed in
analogy to the transfer from N to Z .

De�nition 55. We de�ne the structure

Q := (Q;+Q; �Q; <Q; 0Q; 1Q)
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of rational numbers as follows:

a) De�ne an equivalence relation � on Q0
+�Q0

+ by

(p; q)� (p0; q 0) i� p+ q 0= p0+ q :

b) Let p¡ q: =[(p; q)]� be the equivalence class of (p; q) in �.

c) Let Q: =fp¡ q jp2Q0
+^ p2Q0

+g be the set of rationals.

Exercise 22. Continue the de�nition of the structure Q and prove the relevant properties.

4.3 Real Numbers

De�nition 56. r�Q0
+ is a positive real number if

a) 8p2 r8q 2Q0
+(q <Q p!q 2 r), i.e., r is an initial segment of (Q0

+; <Q);

b) 8p2 r9q 2 r p<Q q , i.e., r is right-open in (Q0
+; <Q);

c) 02 r=/ Q0
+, i.e., r is nonempty and bounded in (Q0

+; <Q).

De�nition 57. We de�ne the structure

R+ := (R+;+R; �R; <R; 1R)

of positive real numbers as follows:

a) Let R+ be the set of positive reals.

b) De�ne the real addition +R:R+�R+!R+ by

r+R r 0= fp+Q p0jp2 r^ p02 r 0g:

c) De�ne the real multiplication �R:R+�R+!R+ by

r �R r 0= fp �Q p0jp2 r^ p02 r 0g:

d) De�ne the strict linear order <R on R+ by

r <R r 0 i� r� r 0^ r=/ r 0:

e) Let 1R: =fp2Q0
+jq <Q 1g.

We justify some details of the de�nition.

Lemma 58.

a) R+2V.

b) If r; r 02R+ then r+R r 0, r �R r 02R+.

c) <R is a strict linear order on R+.

Proof. a) If r 2 R+ then r � Q0
+ and r 2 P(Q0

+). Thus R+ � P(Q0
+), and R+ is a set by the

power set axiom and separation.
b) Let r; r 02R+. We show that

r �R r 0= fp �Q p0jp2 r^ p02 r 0g2R+:

Obviously r �R r 0�Q0
+ is a non-empty bounded initial segment of (Q0

+; <Q).

Consider p 2 r �R r 0, q 2Q0
+, q <Q p . Let p= a

b
�Q a0

b 0
where a

b
2 r and a0

b 0
2 r 0. Let q = c

d
. Then

c

d
=

c � b 0

d � a0 �
Q a0

b 0
, where

c � b0
d � a0 = q �Q b 0

a0
<Q p �Q b 0

a0
=
a
b
�Q a0

b0
�Q b0

a0
=
a
b
2 r :
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Hence c � b 0

d � a0 2 r and
c
d
=
c � b 0
d � a0 �

Q a0

b0
2 r �R r 0:

Similarly one can show that r �R r 0 is open on the right-hand side.
c) The transitivity of <R follows from the transitivity of the relation $. To show that <R is
connex, consider r; r 0 2 R+, r =/ r 0. Then r and r 0 are di�erent subsets of Q0

+. Without loss of
generality we may assume that there is some p 2 r 0 n r . We show that then r <R r 0, i.e., r $ r 0.
Consider q 2 r . Since p2/ r we have p �Q q and q6Q p . Since r 0 is an initial segment of Q0

+, q 2
r 0. �

Exercise 23. Show that (R+; �R; 1R) is a multiplicative group.

We can now construct the complete real line R from R+ just like we constructed Z from N .
Details are left to the reader. We can also proceed to de�ne the structure C of complex numbers
from R .

Exercise 24. Formalize the structure C of complex numbers such that R�C .

4.4 Discussion
The constructions carried out in the previous subsections contained many arbitrary choices. One
could, e.g., de�ne rational numbers as reduced fractions instead of equivalence classes of frac-
tions, ensure that the canonical embeddings of number systems are inclusions, etc. If such
choices have been made in reasonable ways we obtain the following theorem, which contains
everything one wants to know about the number systems. So the statements of the following
theorem can be seen as �rst- and second-order axioms for these systems.

Theorem 59. There are structures N;Z;Q;R; and C with the following properties:

a) the domains of these structures which are also denoted by N; Z;Q; R; and C, resp., sat-
isfy

!=N�Z�Q�R�C ;

b) there are functions +: C �C! C and � : C � C! C on C which are usually written as
binary in�x operations;

c) (C;+; �; 0; 1) is a �eld; for a; b 2C write a¡ b for the unique element z such that a= b+
z ; for a; b2C with b=/ 0 write a

b
for the unique element z such that a= b�z ;

d) there is a constant i, the imaginary unit, such that i�i+1=0 and

C= fx+ i�y jx; y 2Rg;

e) there is a strict linear order < on R such that (R; <; +�R2; � � R2; 0; 1) is an ordered
�eld.

f ) (R; <) is complete, i.e., bounded subsets of R possess suprema:

8X �R (X =/ ;^9b2R8x2Xx<b ¡! 9b2R (8x2Xx<b^:9b0<b8x2Xx<b0))

g) Q is dense in (R; <):

8r; s2R (r < s¡!9a; b; c2Q a<r < b< s<c);

h) (Q;+�Q2; � �Q2; 0; 1) is a �eld; moreover

Q=
n
a

b
ja2Z; b2Z n f0g

o
;

i) (Z;+�Z2; � �Z2; 0; 1) is a ring with a unit; moreover

Z= fa¡ b ja; b2Ng;

j ) +�N2 agrees with ordinal addition on ! ; � �N2 agrees with ordinal multiplication on ! ;
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k) (N;+1; 0) satis�es the second-order Peano axioms, i.e., the successor function n 7! n+ 1
is injective, 0 is not in the image of the successor function, and

8X �N (02X ^8n2Xn+12X ¡! X =N):

This theorem is all we require from the number systems. The details of the previous construc-
tion will not be used again. So we have the standard complex plane, possibly with the identi�ca-
tion of N and !.

C

0 1

i

::: :::
N

Q�R
Z

z=x+ iy

x

y

Remark 60. In set theory the set R of reals is often identi�ed with the sets !! or !2 , basically
because all these sets have the same cardinality. We shall come back to this in the context of
cardinality theory.

5 Sequences
The notion of a sequence is crucial in many contexts.

De�nition 61.

a) A set w is an �-sequence i� w:�! V; then � is called the length of the �-sequence w and
is denoted by j�j. w is a sequence i� it is an �-sequence for some � . A sequence w is
called �nite i� jw j<! .

b) A �nite sequence w:n! V may be denoted by its enumeration w0; :::; wn¡1 where we write
wi instead of w(i). One also writes w0:::wn¡1 instead of w0; :::; wn¡1 , in particular if w
is considered to be a word formed out of the symbols w0; :::; wn¡1 .

c) An !-sequence w:!!V may be denoted by w0; w1; ::: where w0; w1; ::: suggests a de�nition
of w .

d) Let w: �! V and w 0: �0! V be sequences. Then the concatenation w^w 0: � + �0! V is
de�ned by

(w^w 0) ��=w �� and 8i <�0 w^w 0(�+ i)=w 0(i):

e) Let w:�!V and x2V. Then the adjunction wx of w by x is de�ned as

wx=w^f(0; x)g:
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Sequences and the concatenation operation satisfy the algebraic laws of a monoid with cancella-
tion rules.

Proposition 62. Let w;w 0; w 00 be sequences. Then

a) (w^w 0)^w 00=w^(w 0 ^w 00).

b) ;^w=w^;=w .

c) w^w 0=w^w 00!w 0=w 00.

There are many other operations on sequences. One can permute sequences, substitute elements
of a sequence, etc.

5.1 (!-)Sequences of Reals
!-sequences are particularly prominent in analysis. One may now de�ne properties like

lim
i!1

wi= z i� 8"2R+9m<!8i <! (i>m! (z¡ "<wi^wi<z+ "))
or

8x:!!R ( lim
i!1

xi= a! lim
i!1

f(xi) = f(a)):

If x0; x1; ::: is given then the partial sums X
i=0

n

xi

are de�ned recursively as X
i=0

0

xi=0 and
X
i=0

n+1

xi=(
X
i=0

n

xi)+xn :

The map ': !2!R de�ned by

'((xi)i<!)=
X
i=0

1
xi
2i+1

= lim
n!1

X
i=0

n
xi
2i+1

:

maps the function space !2 surjectively onto the real interval

[0; 1]= fr 2R j06 r6 1g:

Such maps are the reason that one often identi�es !2 with R in set theory.

5.2 Symbols and Words
Languages are mathematical objects of growing importance. Mathematical logic takes terms and
formulas as mathematical material. Terms and formulas are �nite sequences of symbols from
some alphabet. We represent the standard symbols =, 2, etc. by some set-theoretical terms =_ ,
2_ , etc. Note that details of such a formalization are highly arbitrary. One really only has to �x
certain sets to denote certain symbols.

De�nition 63. Formalize the basic set-theoretical symbols by

a) =_ =0, 2_ =1, _̂ =2, __ =3, !_ =4, $_ =5, :_ =6, (_ =7, )_ = 8, 9_=9, 8_ =10.
b) Variables v_n=(1; n) for n<!.

c) Let L2= f=_ ;2_ ; _̂ ;__ ;!_ ;$_ ;:_ ; (_;)_; 9_ ; 8_g[f(1; n)jn<!g be the alphabet of set theory.

d) A word over L2 is a �nite sequence with values in L2 .

e) Let L2� = fw j9n<! w:n!L2g be the set of all words over L2 .

f ) If ' is a standard set-theoretical formula, we let '_ 2 L2� denote the formalization of '.
E.g., Ex_ = 9_v_08_v_1:_ v_1 2_ v_0 is the formalization of the set existence axiom. If the intention
is clear, one often omits the formalization dots and simply writes Ex_ = 9v08v1:v12 v0 .
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This formalization can be developed much further, so that the notions and theorems of �rst-
order logic are available in the theory ZF. By carrying out the de�nition of the axiom system
ZF within set theory, one obtains a term ZF_ which represents ZF within ZF. This (quasi) self-
referentiality is the basis for limiting results like the Gödel incompleteness theorems.

6 The von Neumann Hierarchy

We use ordinal recursion to obtain more information on the universe of all sets.

De�nition 64. De�ne the von Neumann Hierarchy (V�)�2Ord by recursion:

a) V0= ; ;

b) V�+1=P(V�) ;

c) V�=
S
�<�V� for limit ordinals � .

We show that the von Neumann hierarchy is indeed a (fast-growing) hierarchy

Lemma 65. Let � <�2Ord. Then

a) V� 2V�
b) V��V�
c) V� is transitive

Proof. We conduct the proof by a simultaneous induction on � .
�=0: ; is transitive, thus a)-c) hold at 0.
For the successor case assume that a)-c) hold at � . Let � <�+1. By the inductive assumption,
V� � V� and V� 2 P(V�) = V�+1 . Thus a) holds at � + 1. Consider x 2 V� . By the inductive
assumption, x � V� and x 2 V�+1 . Thus V� � V�+1 . Then b) at � + 1 follows by the inductive
assumption. Now consider x2V�+1=P(V�). Then x�V��V�+1 and V�+1 is transitive.
For the limit case assume that � is a limit ordinal and that a)-c) hold at all 
 < � . Let � < � .
Then V� 2 V�+1�

S

<� V
 = V� hence a) holds at � . b) is trivial for limit � . V� is transitive as

a union of transitive sets. �

The V� are nicely related to the ordinal � .

Lemma 66. For every � , V�\Ord=� .

Proof. Induction on � . V0\Ord= ;\Ord= ;=0 .
For the successor case assume that V� \Ord= � . V�+1 \Ord is transitive, and every element of
V�+1 \ Ord is transitive. Hence V�+1 \ Ord is an ordinal, say � = V�+1 \ Ord . � = V� \ Ord
implies that � 2 V�+1\Ord= � and �+ 16 � . Assume for a contradiction that �+1<� . Then
�+12V�+1 and �+1�V�\Ord=� , contradiction. Thus �+1= �=V�+1\Ord .
For the limit case assume that � is a limit ordinal and that V� \ Ord = � holds for all � < � .
Then

V�\Ord=(
[
�<�

V�)\Ord=
[
�<�

(V� \Ord) =
[
�<�

�=�:

�

The foundation schema implies that the V�-hierarchy exhausts the universe V .

Theorem 67.

a) 8x�
S
�2OrdV� 9� x�V� .

b) V =
S
�2OrdV� .
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Proof. a) Let x�
S
�2Ord . De�ne a function f :x!Ord by

f(u)=min f
 ju2V
g:

By the axioms of replacement and union, � =
S
ff(u) + 1ju 2 xg 2 V and � 2 Ord. Let u 2 x .

Then f(u)< f(u)+ 16 � and u2Vf(u)�V� . Thus x�V�.
b) Let B=

S
�2OrdV� . By the schema of 2-induction it su�ces to show that

8x (x�B!x2B):

So let x�B=
S
�2OrdV� . By a) take � such that x�V� . Then x2V�+1�

S
�2OrdV�=B . �

The V�-hierarchy ranks the elements of V into levels.

De�nition 68. De�ne the rank (function) rk:V !Ord by

x2Vrk(x)+1 nVrk(x) :

The rank function satis�es a recursive law.

Lemma 69. 8x rk(x) =
S
y2x rk(y)+ 1 .

Proof. Let us prove the statement

8x2V� rk(x)=
[
y2x

rk(y)+ 1

by induction on � . The case � = 0 is trivial. The limit case is obvious since V� =
S
�<� V� for

limit � .
For the successor case assume that the statement holds for � . Consider x 2 V�+1 . If x 2 V� the
statement holds by the inductive assumption. So assume that x 2 V�+1 n V� . Then rk(x) = � .
Let y 2 x � V� . Then y 2 V�+1 n V� for some � = rk(y)< � . rk(y) + 1� � . Thus

S
y2x rk(y) +

1� � . Assume that 
 =
S
y2x rk(y) + 1< � . Let y 2 x . Then rk(y) + 16 
 and y 2 Vrk(y)+1�

V
 . Thus x�V
 , x2V
+1�V� , contradicting the assumption that x2V�+1 nV� . �

Lemma 70. Let A be a term. Then A2V i� 9� A�V� .

The previous analysis of the V�-hierarchy suggest the following picture of the universe V .

Ord V

V�

V�+1

!

�

�+1

0

n
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7 The Axiom of Choice
Natural numbers n2N are used to enumerate �nite sets a as

a= fa0; a1; :::; an¡1g:

Assuming the axiom of choice, one can use ordinals to enumerate any set a as

a= fai j i <�g:

De�nition 71. The Axiom of Choice, AC is the statement

8x(;2/ x^8u; v 2x(u=/ v!u\ v= ;)!9z8u2x9wu\ z= fwg):

The axiom expresses that for every set x consisting of nonempty pairwise disjoint elements there
exists a choice set z , i.e., for every element u 2 x the intersection u \ z consists exactly of one
element. Thus z �chooses� one element out of every element of x .

:::

x

u

w

z

It seems intuitively clear that such choices are possible. On the other hand we shall see that the
axiom of choice has unintuitive, paradoxical consequences.

Theorem 72. The following statements are equivalent:

a) AC ;

b) 8x9g (g is a function with domain x^8u 2 x (u =/ ; ! g(u) 2 u)); such a function g is
called a choice function for x ;

c) 8x9�9ff :�$x .

Proof. a) ! b) Assume AC. Let x be a set. We may assume that every element of x is
nonempty. The class

x0= ffug�uju2 xg

is the image of x under the set valued map u 7! fug�u, and thus a set by replacement. The ele-
ments fug � u of x0 are nonempty and pairwise disjoint. By AC, take a choice set z for x0.
De�ne a choice function g:x!V by letting g(u) be the unique element of u such that

(fug�u)\ z= f(u; g(u))g:
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b)! c) Assume b). Let x be a set and let g: P(x) n f;g! V be a choice function for P(x) n f;g.
De�ne a function F :Ord!x[fxg by ordinal recursion such that

F (�)=

�
g(x nF [�]), if x nF [�] =/ ; ;
x, if x nF [�] = ;:

At �time� �, the function F chooses an element F (�) 2 x which has not been chosen before. If
all elements of x have been chosen, this is signaled by F by the value x which is not an element
of x.
(1) Let �< � and F (�)=/ x . Then F (�); F (�)2 x and F (�) =/ F (�).
Proof . F (�) =/ x implies that x n F [�] =/ ; and hence F (�) = g(x n F [�]) 2 x n F [�]. Since � 2 �,
x nF [�] =/ ; and F (�)= g(x nF [�])2 x nF [�]. F (�)=/ F (�) follows from F (�)2x nF [�]. qed(1)
(2) There is �2Ord such that F (�)=x .
Proof . Assume not. Then by (1), F : Ord! x is injective. Hence F¡1 is a function and Ord =
F¡1[x]. By replacement, Ord is a set, but this is a contradiction. qed(2)
By (2) let � be minimal such that F (�) = x . Let f = F � �: �! x . By the de�nition of F , x n
F [�] = ; , i.e., F [�] =x and f is surjective. By (1), f is also injective, i.e., f :�$x .
c)! a) Assume c). Let the set x consist of nonempty pairwise disjoint elements. Apply c) to

S
x . Take an ordinal � and a function f :�!

S
x . De�ne a choice set z for x by setting

z= ff(�)j9u2x (f(�)2u^8� < �f(�)2/ u)g:

So z chooses for every u2 x that f(�)2 u with � minimal. �

We shall later use the enumeration property c) to de�ne the cardinality of a set. Zorn's Lemma
is an important existence principle which is also equivalent to AC.

De�nition 73. Let (P ;6) be a partial order.

a) X � P is a chain in (P ; 6) if (X; 6) is a linear order where (X; 6) is a short notation
for the structure (X;6\X2).

b) An element p2P is an upper bound for X �P i� 8x2Xx6 p .
c) (P ;6) is inductive i� every chain in (P ;6) possesses an upper bound.

d) An element p2P is a maximal element of (P ;6) i� 8q 2P (q> p!q= p).

Theorem 74. The axiom of choice is equivalent to the following principle, called Zorn's
Lemma: every inductive partial order (P ;6)2V possesses a maximal element.

Proof. Assume AC and let (P ;6) 2 V be an inductive partial order. Let g: P(P ) n f;g! V be
a choice function for P(P ) n f;g. De�ne a function F : Ord ! P [ fP g by ordinal recursion; if
there is an upper bound for F [�] which is not an element of F [�] let

F (�) = g(fp2P nF [�] j p is an upper bound for F [�]g);
otherwise set

F (�)=P :

At �time� �, the function F chooses a strict upper bound of F [�] if possible. If this is not pos-
sible, this is signaled by F by the value P .
The de�nition of F implies immediately:
(1) Let �< � and F (�)=/ P . Then F (�)<F (�).
(2) There is �2Ord such that F (�)=P .
Proof . Assume not. Then by (1), F : Ord! P 2 V is injective, and we get the same contradic-
tion as in the proof of Theorem 72. qed(2)
By (2) let � be minimal such that F (�)=P . By (1), F [�] is a chain in (P ;6). Since the partial
order is inductive, take an upper bound p of F [�]. We claim that p is a maximal element of (P ;
6). Assume not and let q 2 P , q > p. Then q is a strict upper bound of F [�] and q 2/ F [�]. But
then the de�nition of F yields F (�) =/ P , contradiction.
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For the converse assume Zorn's Lemma and consider a set x consisting of nonempty pairwise
disjoint elements. De�ne the set of �partial choice sets� which have empty or singleton intersec-
tion with every element of x :

P =
�
z �

[
x j 8u2 x(u\ z= ;_9wu\ z= fwg)

	
:

P is partially ordered by � . If X is a chain in (X; �) then
S
X is an upper bound for X.

Hence (X;�) is inductive.
By Zorn's Lemma let z be a maximal element of (X; �). We claim that z is a �total� choice set
for x :
(3) 8u2 x9wu\ z= fwg.
Proof . If not, take u 2 x such that u \ z = ;. Take w 2 u and let z 0= z [ fwg. Then z 0 2 P , con-
trary to the the �-maximality of z. �

Theorem 75. The axiom of choice is equivalent to the following principle, called Hausdor�'s
Maximality Principle: every partial order (P ;6) 2 V possesses an �-maximal chain X � P, i.e.,
X is a chain, and whenever X 0�P is a chain with X 0�X then X 0=X .

Proof. It is straightforward to show the equivalence with Zorn's Lemma. See also: Hausdor�,
Grundzüge der Mengenlehre, p. 141: Wir haben damit für eine teilweise geordnete Menge A die
Existenz gröÿter geordneter Teilmengen B bewiesen; natürlich kann es deren verschiedene
geben. �

De�nition 76. The axiom system ZFC consists of the ZF-axioms together with the axiom of
choice AC.

The system ZFC is usually taken as the foundation of mathematics. The ZF axioms have a good
intuitive motivations. The axiom of choice is more controversial; AC has desirable consequences
like Zorn's Lemma and its applications, but on the other hand AC has some paradoxical and
problematic consequences. The status of AC within set theory can be compared to the parallel
axiom in geometry. Similar to the situation in (non-)euclidean geometry one can show that if
there is a model of the ZF axioms then there is a model of ZFC.

8 Cardinalities

Apart from its foundational role, set theory is mainly concerned with the study of arbitrary
in�nite sets and in particular with the question of their size. Cantor's approach to in�nite sizes
follows naive intuitions familiar from �nite sets of objects.

De�nition 77.

a) x and y are equipollent, or equipotent, or have the same cardinality, written x � y, if
9ff :x$ y .

b) x has cardinality at most that of y, written x4 y, if 9ff :x! y is injective.

c) We write x� y for x4 y and x� y .

These relations are easily shown to satisfy

Lemma 78. Assume ZF. Then

a) � is an equivalence relation on V.

b) x� y!x4 y^y4x .
c) x4x .
d) x4 y^y4 z!x4 z .
e) x� y!x4 y .
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The converse of b) is also true and proved in an exercise.

Theorem 79. (Cantor - Bernstein) x4 y^y4x!x� y .

Assuming the axiom of choice, every set is equipollent with an ordinal (Theorem 72 c). One can
take the minimal such ordinal as the canonical representative of the equivalence class with
respect to �.

De�nition 80.

a) card(x)=min f�j 9ff :�$xg is the cardinality of the set x. One also writes x��= card(x).

b) An ordinal � is a cardinal i� it �= card(x) for some set x.

c) Let Cd= f� 2Ord j � is a cardinal g be the class of all cardinals, and let Card= f�>! j �
is a cardinal g be the class of in�nite cardinals.

Let us assume AC until further notice. Then Cantor's two approaches to cardinality agree.

Theorem 81.

a) x4 y$ card(x)6 card(y).

b) x� y$ card(x) = card(y).

Proof. a) Let x4 y and let f : x! y be injective. Further let fx: card(x)$ x and fy: card(y)$
y . Then fy

¡1 � f � fx: card(x)! card(y) is injective. Let z= fy
¡1 � f � fx[card(x)]� card(y). Then

card(x)= card(z)6 otp(z)6 card(y).
Conversely, let card(x) 6 card(y) with fx: card(x)$ x and fy: card(y)$ y as above. Then fy �
fx
¡1:x! y is injective and x4 y .
b) is trivial. �

As an immediate corollary we get the Cantor�Schröder�Bernstein theorem with AC.

Theorem 82. (ZFC) Let a4 b and b4 a . Then a� b.

We shall now explore �small� cardinals. Below !, the notions of natural number, ordinal number
and cardinal number agree.

Theorem 83. For all natural numbers n<! holds

a) card(n)=n;

b) n2Cd .

Proof. a) By complete induction on n.
For n=0, ;: 0$ 0 and hence card(0)= 0 .
Assume that card(n) = n. We claim that card(n + 1) = n + 1. Obviously card(n + 1) 6 n + 1 .
Assume for a contradiction that m= card(n+1)<n+1 . Take f :m$n+1 . Let f(i0)=n.
Case 1 : i0=m¡ 1. Then f � (m¡ 1): (m¡ 1)$n and card(n)6m¡ 1<n , contradiction.
Case 2 : i0<m¡ 1 . Then de�ne g: (m¡ 1)$n by

g(i)=

�
f(i) , if i=/ i0;
f(m¡ 1) , if i= i0 :

Hence card(n)6m¡ 1<n , contradiction.
b) follows immediately from a). �

Theorem 84.

a) card(!)=! ;

b) ! 2Card .
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Proof. Assume for a contradiction that n= card(!)<! . Let f :n$! . De�ne g: (n¡ 1)!! by

g(i) =

�
f(i), if f(i)< f(n¡ 1);
f(i)¡ 1; if f(i)> f(n¡ 1):

(1) g is injective.
Proof. Let i < j <n¡ 1.
Case 1. f(i); f(j)< f(n¡ 1). Then g(i) = f(i) =/ f(j)= g(j).
Case 2. f(i)< f(n¡ 1)< f(j). Then g(i)= f(i)< f(n¡ 1)6 f(j)¡ 1= g(j).
Case 3. f(j)< f(n¡ 1)< f(i). Then g(j) = f(j)< f(n¡ 1)6 f(i)¡ 1= g(i).
Case 4. f(n¡ 1)< f(i); f(j). Then g(i) = f(i)¡ 1=/ f(j)¡ 1= g(j). qed(1)
(2) g is surjective.
Proof . Let k 2!.
Case 1. k < f(n ¡ 1). By the bijectivity of f take i < n ¡ 1 such that f(i) = k . Then g(i) =
f(i)= k .
Case 2. k > f(n¡ 1). By the bijectivity of f take i < n¡ 1 such that f(i) = k + 1 . Then g(i) =
f(i)¡ 1= k . qed(2)
But this is a contradiction to the supposed minimality of n= card(!). �

Lemma 85.

a) card(!+1)=! .

b) card(!+!) =! .

c) card(!�!)=! .

Proof. a) De�ne fa:!$!+1 by

f(n) =

�
! , if n=0
n¡ 1 , else

b) De�ne fb:!$!+! by

f(n) =

�
m , if n=2�m
!+m , if n=2�m+1

c) De�ne fc:!$!�! by

f(n)=!�k+ l, if n=2k�(2�l+1)¡ 1
�

9 Finite, countable, uncountable sets

De�nition 86.

a) x is �nite if card(x)<! .

b) x is in�nite if x is not �nite.

c) x is countable if card(x)6! .
d) x is countably in�nite if card(x)=! .

e) x is uncountable if x is not countable.

9.1 Finite sets
We have the following closure properties for �nite sets:

Theorem 87. Let a; b �nite, let x2V.

a) Every subset of a �nite set is �nite.

b) a[fxg, a[ b, a\ b, a� b, a n b, and P(a) are �nite. We have card(P(a))= 2card(a).

c) If ai is �nite for i2 b then
S
i<b ai is �nite.
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Proof. Easy. �

Finite sets can be distinguished by dependencies between injective and surjective maps.

Theorem 88. Let a be �nite. Then

a) 8f
�
f : a!!!!!!!!!!!!!!!!!!!!!!!!

inj:
a implies f : a!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

surj:
a
�

b) 8f
�
f : a!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !surj:

a implies f : a!!!!!!!!!!!!!!!!!!!!!!!!inj: a
�

Using the axiom of choice one can also show the converse.

Theorem 89. Let a be in�nite. Then

a) 9ff :!!!!!!!!!!!!!!!!!!!!!!!!!inj: a .

b) 9f
�
f : a!!!!!!!!!!!!!!!!!!!!!!!!

inj:
a and :f : a!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

surj:
a
�

c) 9f
�
f : a!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !surj:

a and :f : a!!!!!!!!!!!!!!!!!!!!!!!!inj: a
�

This yields:

Theorem 90. For a2V the following statements are equivalent:

a) a is �nite;

b) 8f
�
f : a!!!!!!!!!!!!!!!!!!!!!!!!

inj:
a implies f : a!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

surj:
a
�
;

c) 8f
�
f : a!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !surj:

a implies f : a!!!!!!!!!!!!!!!!!!!!!!!!inj: a
�
.

If one does not assume the axiom of choice, one can use b) or c) to de�ne the notion of �nite-
ness.

9.2 Countable sets
We have the following closure properties for countable sets:

Theorem 91. Let a; b countable, let x2V.
a) Every subset of a countable set is countable

b) a[fxg, a[ b, a\ b, a� b, a n b are countable

c) If an is countable for n<! then
S
n<! an is countable

Proof. Countability will be shown by exhibiting injections into countable sets. Then a) is
trivial.
b) Let fa: a!! and fb: b!! be injective. Then de�ne injective maps:

f0: a[fxg!!; f0(u) =

�
fa(u)+ 1, if u2 a
0, else

f1: a[ b!!; f1(u) =

�
2 � fa(u)+ 1, if u2 a
2 � fb(u), else

f2: a� b!!; f2(u; v)= 2fa(u)�(2�fb(v)+ 1)

c) By the axiom of choice choose a sequence (hnjn<!) of injections hn: an!! . De�ne

f3:
[
n<!

an!! ; f3(u)= 2n�(2�hn(u)+ 1), where n is minimal such that u2 an :
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�

9.3 Uncountable sets

Theorem 92. (Cantor) x�P(x)

Proof. card(x)6 card(P(x)) is clear. Assume that card(x) = card(P(x)) and let f : x$P(x) be
bijective. De�ne

a= fu2 xju2/ f(u)g�x:
Let a= f(u0). Then

u02 f(u0)$u02 a$u02 f(u0):

Contradiction. Hence card(x)< card(P(x)). �

Theorem 93. @ := card(P(!)) is an uncountable cardinal.

Note that by previous exercises or lemmas we have

card(P(!))= card(R)= card(2!)= card(!!)

Cantor spent a lot of e�ort on determining the size of @ and postulated that @ is the smallest
uncountable cardinal.

10 The Alefs

Theorem 94. 8�9�2Card�>�. Hence Card is a proper class of ordinals.

Proof. Let � > !. Then � = card(P(�)) > card(�). And � > � since otherwise card(P(�)) 6 �
and card(card(P(�)))6 card(�). �

De�nition 95. For any ordinal � let �+ be the smallest cardinal >� .

Theorem 96. Let X �Cd be a set. Then
S
X 2Cd.

Proof. Set �=
S
X. � is an ordinal. Assume that card(�)<�. Take � 2X such that card(�)<

�. Then �6� and card(�)6 card(�)<�. But card(�)=� because � is a cardinal. �

This allows the following

De�nition 97. De�ne the alef sequence

(@�j�2Ord)

recursively by

@0 = !

@�+1 = @�+

@� =
[
�<�

@� for limit ordinals �

Obviously

Card= f@�j�2Ordg
is the class of all cardinals.

De�nition 98. An in�nite cardinal of the form @�+1 is a successor cardinal. An in�nite car-
dinal of the form @� with � a limit ordinal is a limit cardinal.

Exercise 25. There are cardinals � such that �=@k .
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11 Cardinal Arithmetic
For disjoint �nite sets a and b natural addition and multiplication satis�es

card(a[ b)= card(a)+ card(b) and card(a� b)= card(a) � card(b):

This motivates the following extension of natural arithmetic to all cardinals.

De�nition 99. Let �; � �nite or in�nite cardinals. Then let

a) �+ �= card(a [ b), where a; b are disjoint sets with �= card(a) and �= card(b); �+ � is
the (cardinal) sum of � and � .

b) � ��= card(���); � �� is the (cardinal) product of � and � .

c) ��= card(��); �� is the (cardinal) power of � and � .

Note that we are using the same notations as for ordinal arithmetic. It will usually be clear
from the context whether ordinal or cardinal operations are intended.
The �arithmetic� properties of certain set operations yield usual arithmetic laws for cardinal
arithmetic.

Lemma 100.

a) Cardinal addition is associative and commutative with neutral element 0.

b) Cardinal multiplication is associative and commutative with neutral element 1.

c) � � (�+ �)=� ��+� � � .

d) �0=1 , 0�=0 for �=/ 0, �1=�, 1�=1, ��+�=�� ��� , ����=(��)�.

Proof. c) Let a; b be disjoint sets with �= card(a) and �= card(b). Then

� � (�+ �) = card(�� (a[ b))
= card((�� a)[ (�� b))
= card((�� a)) + card((�� b))
= � ��+� � �;

using that �� (a[ b)= (�� a)[ (�� b) and that �� a and �� b are disjoint.
d)

�0= card(0�)= card(f;g)= card(1)=1 :

In case �=/ 0 we have that �0= ff jf :�!;g= ; and thus

0�= card(�0)= card(;)= 0:

For �1=� consider the map �$ 1� given by � 7! f(0; �)g.
For 1�=1 observe that �1= ff(�; 0)j�<�gg is a singleton set.
Let a; b be disjoint sets with �= card(a) and �= card(b). Then

��+� = card(a[b�)
= card((a�)� (b�))
= card(a�) � card(b�)
= �� ��� ;

using that a[b�� (a�)� (b�) via the map f 7! (f � a; f � b).
Finally,

���� = card(����)
= card(�(��))
= card(��)�

= (��)� ;
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using that ����� �(��) via the map

f 7! (f� j� < �)

where f�:�!� with f�(�)= f(� ; �), �

12 Wellfounded Relations

The axiom schema of foundation yields an induction theorem for the 2-relation, and in the pre-
vious section we have seen a recursive law for the rank-function. We generalize these techniques
to wellfounded relations. The results of this section do not require the axiom of choice.

De�nition 101. Let R be a relation on a domain D.

a) R is wellfounded, i� for all terms A

;=/ A^A�D!9x2A A\fy jyRxg= ;:

b) R is strongly wellfounded i� it is wellfounded and

8x2D fy 2D jyRxg2V :

c) R is a wellorder i� R is a wellfounded strict linear order.

d) R is a strong wellorder i� R is a strongly wellfounded wellorder.

By the scheme of foundation, the 2-relation is strongly wellfounded. The ordinals are strongly
wellordered by <. There are wellfounded relations which are not strongly wellfounded: e.g., let
R�Ord�Ord,

xRy i� (x=/ 0^ y=/ 0^x< y)_ (y=0^ x=/ 0);

be a rearrangement of (Ord; <) with 0 put on top of all the other ordinals.
For strongly wellfounded relations, every element is contained in a set-sized initial segment of
the relation.

Lemma 102. Let R be a strongly wellfounded relation on D. Then

8x�D9z (z �D^x� z ^8u2 z8vRu v 2 z):

Moreover for all x�D, the R-transitive closure

TCR(x)=
\
fz jz �D^x� z ^8u2 z8vRu v 2 zg

of x is a set. In case R is the 2-relation, we write TC(x) instead of TC2(x).

Proof. We prove by R-induction that

8x2D TCR(fxg)2V :

So let x2D and 8yRx TCR(fyg)2V . Then

z= fxg[
[
yRx

TCR(fyg)2V

by replacement. z is a subset of D and includes fxg. z is R-closed, i.e., closed with respect to
R-predecessors: each TCR(fyg) is R-closed, and if yRx then y 2 fyg � TCR(fyg) � z . So
TCR(fxg) is the intersection of a non-empty class, hence a set.
Finally observe that we may set

TCR(x)=
[
y2x

TCR(fyg):

�

Exercise 26. Show that for an ordinal � , TC(�)=� and TC(f�g) =�+1 .
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For strongly wellfounded relations, the following recursion theorem holds:

Theorem 103. Let R be a strongly wellfounded relation on D . Let G: V ! V. Then there is a
canonical class term F, given by the subsequent proof, such that

F :D! V and 8x2D F (x) =G(F � fy jyRxg):

We then say that F is de�ned by R-recursion with the recursion rule G. F is unique in the sense
that if another term F 0 satis�es

F 0:D!V and 8�2D F 0(x)=G(F 0 � fy jyRxg)
then F =F 0.

Proof. We proceed as in the ordinal recursion theorem. Let

F~:=ff j9z �D (8x2 z fy jyRxg� z ; f : z! V and 8x2 z f(x)=G(f � fy jyRxg))g

be the class of all approximations to the desired function F .
(1) Let f ; g 2F~. Then f ; g are compatible, i.e., 8x2dom(f)\ dom(g) f(x)= g(x).
Proof . By induction on R . Let x 2 dom(f) \ dom(g) and assume that 8yRx f(y) = g(y). Then
f � fy jyRxg= g � fy jyRxg

f(x)=G(f � fy jyRxg)=G(g � fy jyRxg)= g(x):

qed(1)
By the compatibility of the approximation functions the union

F =
[

F~

is a function de�ned on dom(F )�D . dom(F ) is R-closed since the domain of every approxima-
tion is R-closed.
(2) 8x2dom(F ) (fy jyRxg� dom(F )^F (x)=G(F � fy jyRxg)).
Proof . Let x 2 dom(F ). Take some approximationf 2 F~ such that x 2 dom(f ). Then
fy jyRxg� dom(f)� dom(F ) and

F (x)= f(x)=G(f � fy jyRxg) =G(F � fy jyRxg):
qed(2)
(3) D= dom(F ).
Proof . We show by R-induction that 8x 2D x 2 dom(F ). Let x 2D and assume that 8yRx y 2
dom(F ). TCR(fy jyRxg)� dom(F ) since dom(F ) is R-closed. Then

f =(F �TCR(fy jyRxg))[f(x;G(F � fy jyRxg))g

is an approximation with x2 dom(f), and so x2 dom(F ). �

Exercise 27. De�ne set theoretic operations

x+ y=x[fx+ z jz 2 yg
and

x � y=
[
z2y

(x � z+x)

and study their arithmetic/algebraic properties. Show that they extend ordinal arithmetic.

Theorem 104. Let R be a strongly wellfounded relation on D and suppose that R is exten-
sional, i.e., 8x; y 2D (8u (uRx$uRy)!x= y). Then there is a transitive class D� and an iso-
morphism �: (D; R)$ (D� ;2). D� and � are uniquely determined by R and D, they are called the
Mostowski-collapse of R and D.

Proof. De�ne �:D!V by R-recursion with

�(x)= f�(y)jyRxg:
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Let D� = rng(�).
(1) D� is transitive.
Proof . Let �(x) 2 D� and u 2 �(x) = f�(y)jyRxg. Let u = �(y), yRx . Then u 2 rng(�) = D� .
qed(1)
(2) � is injective.
Proof . We prove by 2-induction that every z 2D� has exactly one preimage under � . So let z 2
D� and let this property be true for all elements of z . Assume that x; y 2D and �(x) =�(y) = z .
Let uRx . Then �(u) 2 �(x) = �(y) = f�(v)jvRyg. Take vRy such that �(u) = �(v). By the
inductive assumption, u= v, and uRy . Thus 8u (uRx!uRy). By symmetry, 8u (uRx$uRy).
Since R is extensional, x= y . So z has exactly one preimage under � . qed(2)
(3) � is an isomorphism, i.e., � is bijective and 8x; y 2D (xRy$�(x)2 �(y)).
Proof . Let x; y 2 D. If xRy then �(x) 2 f�(u)juRyg = �(y). Conversely, if �(x) 2
f�(u)juRyg = �(y) then let �(x) = �(u) for some uRy . Since � is injective, x = u and xRy .
qed(3)
Uniqueness of the collapse D� and � is given by the next theorem. �

Theorem 105. Let X and Y be transitive and let �: X$ Y be an 2-2-isomorphism between X
and Y, i.e., 8x; y 2X (x2 y$�(x)2�(y)). Then �= id �X and X =Y.

Proof. We show that �(x) = x by 2-induction over X. Let x 2 X and assume that 8y 2
x �(y)= y .
Let y 2x. By induction assumption, y=�(y)2�(x). Thus x��(x).
Conversely, let v 2 �(x). Since Y = rng(�) is transitive take u 2X such that v= �(u). Since � is
an isomorphism, u2x. By induction assumption, v=�(u)=u2x. Thus �(x)�x. �

If R is a well-order on D then R is obviously extensional. We study the Mostowski collapse of
strongly well-ordered relations.

Theorem 106. Let R be a strongly well-ordered relation on D. Let �: (D; R)$ (D� ; 2) be the
Mostowski-collapse of R and D. If D is a proper class then D� = Ord. If D is a set then D� is
an ordinal which is called the ordertype of (D;R). We then write D� = otp(D;R).

Proof. D� is transitive since it is a Mostowski collapse.
(1) Every element of D� is transitive.
Proof . Let x2 y 2 z 2D� . Since D� is transitive, x; y; z 2D� and there are a; b; c2D such that x=
�(a), y = �(b), and z = �(c). Since � is an order-isomorphism, aRbRc . Since R is a transitive
relation, aRc . This implies x2 z . qed(1)
(2) Every element of D� is an ordinal.
Proof . Let z 2 D� . z is transitive, and it remains to show that every element of z is transitive.
Let y 2 z . Then y 2D� and so y is transitive by (1). qed(2)
Consider the case that D is a proper class. Then D� is a proper class of ordinals. D� must be
unbounded in the ordinals, since it would be a set otherwise. By transitivity, every ordinal
which is smaller than some element of D� is an element of D� . Hence D� =Ord.
If D is a set, then D� is a transitive set, and by (1), D� 2Ord. �

By Lemma 105, any order-isomorphism �: (�; <) $ (�; <) between ordinals must be the iden-
tity. So the ordertype of a set-sized well-order (D; R) is the unique ordinal, to which it is order-
isomorphic.

Lemma 107. Let x � � 2 Ord. Then (x; <) is a well-order. Let �: (x; <)$ (opt(x; <); <) be
the Mostowski collapse of (x;<). Then 8� 2x �>�(�) and otp(x;<)6� .

Proof. By induction on � 2 x . Let � 2 �(�) = f�(�)j� 2 x^ � < �g. Let �=�(�) with � 2 x^ � <
� . By induction �=�(�)6 � < � . Thus �(�)� � and �(�)6 � .
Similarly consider � 2 otp(x; <) = f�(�)j� 2 xg. Let �= �(�) with � 2 x . Then �= �(�)6 � < � .
Thus otp(x;<)�� . �
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13 Further Cardinal Arithmetic
We determine the values of cardinal addition and multiplication for in�nite cardinals.

De�nition 108. De�ne the Gödel ordering <2 of Ord�Ord by

(�; �)<2 (�0; � 0) i� max (�; �)<max (�0; � 0);
or max (�; �)=max (�0; � 0)^�<�0;
or max (�; �)=max (�0; � 0)^�=�0^ � < � 0:

Lemma 109. <2 is a wellordering of Ord � Ord . Let G: (Ord � Ord; <2)$ (Ord; <) be the
Mostowski collapse of (Ord � Ord; <2). G is the Gödel pairing function. De�ne inverse func-
tions G1:Ord!Ord and G2:Ord!Ord such that

8� G(G1(�); G2(�))=�:

Lemma 110. G:@��@�$@� .

Proof. By induction on � .
Case 1 . �=0 . By the de�nition of <2, @0�@0 is an initial segment of <2. Let

G[@0�@0] = � 2Ord :

We show that � = @0 . Since @0�@0 is in�nite, � > @0 . Assume that � > @0 . Take m; n 2 ! such
that G(m;n)=!. Then (m;n) has in�nitely many predecessors in <2. But on the other hand

f(k; l)j(k; l)<2 (m;n)g� (max (m;n)+ 1)� (max (m;n) +1)

is �nite. Hence G[@0�@0] =@0 .
Case 2 . �> 0 and the Lemma holds for � <� . Let

G[@��@�] = � 2Ord :

We show that �= @� . Since card(@��@�)> @� we have � >@� . Assume that � > @� . Take (�;
�)2@��@� such that G(�; �)=@�. Then G witnesses that

f(� 0; � 0)j(� 0; � 0)<2 (�; �)g�@� :

On the other hand set @�= card(max (�; �)+1)<@� . Then, using the inductive hypothesis,

card(f(� 0; � 0)j(� 0; � 0)<2 (�; �)g) 6 card((max (�; �)+ 1)� (max (�; �)+ 1))

= card(@��@�)
= @�<@� ;

contradiction. Hence G[@��@�] =@� . �

Theorem 111.

a) If �2Card then � ��=� .
b) If �2Card and �2Cd, �=/ 0 then � ��=max (�; �) .

c) If �2Card and �2Cd then �+�=max (�; �) .

Proof. a) � ��= card(���)=� , by the properties of the Gödel pairing function.
b) The map i 7! (i; 0) injects � into �� � , and the map j 7! (0; j) injects � into �� � . Hence �;
�6� �� . Thus

max (�; �)6� ��6max (�; �) �max (�; �) ================================ =
(a)

max(�; �):

c) Obviously ��f0g�� and ��f1g�� . The inclusion

(f0g��)[ (f1g��)�max (�; �)�max (�; �)

implies

max (�; �)6�+�6max (�; �) �max (�; �) ================================ =
(a)

max(�; �): �
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For in�nite cardinal exponentiation the situation is very di�erent. Only a few values can be
determined explicitely.

Lemma 112. For �2Card and 16n<! we have �n=� .

Proof. By complete induction. �1=� was proved before. And

�n+1=(�n) ��1=� � �=�: �

The �next� exponential value 2@0 is however very undetermined. It is possible, in a sense to be
made precise later, that 2@0 is any successor cardinal, like e.g. @13 .
Cantor's continuum hypothesis is equivalent to the cardinal arithmetic statement

2@0=@1 :

Lemma 113. For �2Card and 26�6 2� we have ��=2�.

Proof.

2�6��6 (2�)�=2���=2�: �

14 Co�nality

To get some more information on cardinal exponentiation, we need to measure how �fast� a car-
dinal can be approximated using smaller cardinals.

De�nition 114.

a) A set x�� is co�nal in the limit ordinal � if 8�<�9� 2 x�< � .

b) The co�nality of a limit ordinal � is

cof(�)=min fotp(x)jx�� is co�nal in �g:

c) A limit ordinal � is regular if cof(�)=� ; otherwise � is singular.

These notions are due to Felix Hausdor�, who called them �kon�nal� and �Kon�nalität�. Please
observe the �kon�nal� in German.

Lemma 115.

a) cof(�) =min fcard(x)jx�� is co�nal in �g

b) cof(@0)=@0 , i.e., @0 is regular

c) cof(�)6 card(�)6�
d) cof(�)2Card

e) cof(�) is regular, i.e., cof(cof(�))= cof(�)

f ) If 
 is a limit ordinal then cof(@
)= cof(
)

g) cof(@!)=@0 , i.e., @! is a singular cardinal

Proof. a) > holds since otp(x)> card(x). Conversely let x have minimal cardinality such that x
is co�nal in � and let f : card(x)$ x . De�ne a weakly increasing map g: card(x)! � by

g(i)=
[
j<i

f(j) :

g is wellde�ned by the minimality of x . y= g[card(x)] is co�nal in � . y is order-isomorphic to

fi < card(x)j8j < ig(j)< g(i)g� card(x):
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Hence

otp(y)= otp(fi < card(x)j8j < ig(j)< g(i)g)6 card(x):

Thus

cof(�)6 otp(y) = card(x)=min fcard(x)jx�� is co�nal in �g:

b)¡ d) follow from a).
e) Let x � � be co�nal in in � with otp(x) = cof(�) and order-isomorphism f : cof(�)$ x . Let
y � cof(�) be co�nal with otp(y) = cof(cof(�)) and order-isomorphism g: cof(cof(�))$ y . Then
z= f � g[cof(cof(�))] is co�nal in � with otp(z)= cof(cof(�)). Hence

cof(�)6 otp(z)= cof(cof(�)):

The converse inequality follows from c).
f) (6) Let x be co�nal in 
 with otp(x) = cof(
). Then f@iji2xg is co�nal in @
 with

otp(f@iji2xg)= otp(x) = cof(
):

Hence cof(@
)6 cof(
).
(>) Now let y be co�nal in @
 with otp(y) = cof(@
). De�ne x = fi < 
 j9� 2 y@i 6 � < @i+1g.
Then x is co�nal in 
 with card(x)6 card(y)= cof(@
). Hence cof(
)6 cof(@
). �

Theorem 116. Every successor cardinal @�+1 is regular.

Proof. Assume that @�+1 is singular. Let x have minimal cardinality such that x is co�nal in
@�+1 . Then card(x) 6 @� . Let f : @� ! x be surjective. Using the axiom of choice take a
sequence (gij0< i < @�+1) of surjective functions gi: @�! i . De�ne function h: @�� @�!@�+1
by

h(�; �)= gf(�)(�):

(1) h:@��@�!@�+1 is surjective.
Proof . Let � 2@�+1 . Take � <@� such that f(�)>� . gf(�):@�! f(�) is surjective. Take � <@�
such that gf(�)(�)= �. Thus �=h(�; �)2 ran(h). qed(1)
This implies

@�+1= card(@�+1)6 card(@��@�) =@� � @�=@� :
Contradiction. �

So @0;@1;@2; :::;@n; ::: are all regular.

Question 117. (Hausdor�) Are there regular limit cardinals >@0 ?

De�nition 118. For (�iji < �) a sequence of �nite or in�nite cardinals de�ne the sumX
i<�

�i= card

 [
i<�

�i�fig
!

and the product Y
i<�

�i= card
¡�i<��i

�
where

�i<�Ai= ff jf : �!V ^8i < �f(i)2Aig:

Theorem 119. (König) If (�iji < �) and (�iji < �) are sequences of cardinals such that 8i <
��i<�i then X

i<�

�i<
Y
i<�

�i

Proof. Assume for a contradiction that
P
i<��i>

Q
i<� �i and that G:

S
i<� �i�fig$�i<��i

were a surjection. For i < �

card(fG(� ; i)(i)j� <�ig)6�i<�i ;
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and one can choose �i2�i n fG(� ; i)(i)j� <�ig. De�ne f 2�i<��i by

f(i)= �i :

Since G is surjective, take (�0; i0)2dom(G) such that G(�0; i0) = f . Then

G(�0; i0)(i0)= f(i0)= �i0=/ G(� ; i0)(i0)

for all � <�i0 . Contradiction. �

Theorem 120. If �; � are cardinals such that �> 2 and �>@0 then

cof(��)>�

Hence

cof(2@0)>@1
and in particular

2@0=/ @! :

Proof. Assume that cof(��)6 � . Then there is a function f : �! �� such that ran(f) is co�nal
in ��. Then

S
i<� f(i)=�

� and so

��= card

 [
i<�

f(i)

!
6 card

 [
i<�

f(i)�fig
!
= card

 [
i<�

card(f(i))�fig
!
=
X
i<�

card(f(i)):

But by König's Theorem,

��=����=(��)�=
Y
i<�

��>
X
i<�

card(f(i)): �

Theorem 121. (The Hausdor� recursion formula)

@�+1
@� =@�

@� � @�+1 :

Proof. Distinguish two cases:
Case 1 : @�+16 2@�. Then

@�+1
@� =2@�=@�

@�=@�
@� � @�+1 :

Case 2 : 2@�<@�+1 : Then @�<@�+1 . Using the regularity of @�+1

@�
@� � @�+1

6 @�+1
@� � @�+1

@� =

=@�+1
@� = card(ff jf :@�!@�+1g)

= card
 [
�<@�+1

ff jf :@�! �g
!

6
X

�<@�+1

card(ff jf :@�! �g)

=
X

�<@�+1

card(ff jf :@�! card(�)g)

=
X

�<@�+1

card(�)@�

6
X

�<@�+1

@�
@�

= @�
@� � @�+1

�
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15 Cardinal exponentiation and the Generalized Continuum
Hypothesis

The function � 7! 2� is called the continuum function , due to the relations between 2@0 and the
usual continuum of real numbers. The beth numbers are de�ned in analogy with the aleph func-
tion, using the 2�-operation instead of the cardinal successor function.

De�nition 122. De�ne the sequence

(i�j�2Ord)

of beth numbers recursively by

i0 = @0
i�+1 = 2i�

i� =
[
�<�

i� for limit ordinals �

Like every continuous ordinal function, there are �xed points i�=� of this sequence.

De�nition 123.

a) An inaccessible cardinal � is a regular �xed point of the @�-function:

�=@� and cof(�)=�:

b) A strongly inaccessible cardinal � is a regular �xed point of the i�-sequence:

�=i� and cof(�) =�:

The existence of inaccessible and strongly inaccessible cardinals can not be shown in ZFC,
provided the theory ZFC is consistent.

De�nition 124. De�ne the gimel function j:Card!Card by j(�) =�cof(�).

By König's theorem, j(�)>� . Note that @ (Alef), i (Beth) and j (Gimel) are the �rst three let-
ters of the Hebrew alphabet. The gimel function determines all values of the continuum func-
tion.

De�nition 125. For �2Cd and �2Card let

�<�=
[
�<�

�card(�):

Theorem 126.

a) If � is regular then 2�= j(�).

b) If � is a singular cardinal and the continuum function is eventually constant below � ,
i.e.,

9��<�8� (��6�<�!2��=2�);

then 2�=2<�.

c) If � is a singular cardinal and the continuum function is not eventually constant below �
then 2�= j(2<�).

Proof. a) If � is regular then

2�=��=�cof(�)= j(�):

Now let � be singular and let the sequence (�iji < cof(�)) be strictly increasing and co�nal in � .
For i < cof(�) choose (AC) an injection fi:P(�i)! 2<� . De�ne

G:P(�)! cof(�)(2<�)
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by

x 7! (fi(x\ �i)ji < cof(�)):

We argue that G is injective: let x; y 2 P(�), x=/ y. Then take i < cof(�) such that x \ �i=/ y \
�i . Since fi is injective: fi(x\�i)=/ fi(y\ �i). Then G(x)=/ G(y) because

G(x)(i)= fi(x\ �i) =/ fi(y \�i)=G(y)(i):
By the injectivity of G

2�6 (2<�)cof(�):

b) Let 2<�=2�� be the eventually constant value of the continuum function below � . Then

2<�6 2�6 (2<�)cof(�)=(2��)cof(�)=2���cof(�)=2max(��;cof(�))=2��=2<�:

c) In this case we show that cof(�) = cof(2<�). The function

i 7!2�i

is not eventually constant and thus maps cof(�) co�nally into 2<�. Hence cof(2<�) 6 cof(�).
Assume that cof(2<�)< cof(�). Let z � 2<� be co�nal such that card(z)< cof(�). Then

z�= fij9� 2 z2�i6 � < 2�i+1g� cof(�)

is co�nal in cof(�) and card(z�)6 card(z)< cof(�), contradiction.
So we obtain

j(2<�)= (2<�)cof(2
<�)=(2<�)cof(�)6 (2�)cof(�)6 2�6 (2<�)cof(�)=(2<�)cof(2<�)= j(2<�):

�

The following theorem shows that �� is uniquely determined by the gimel function.

Theorem 127. Let � 2 Card. Then �� is determined by the previous theorem and by recursion
on �:

a) 0�=0, 1�=1.

b) For 26�6� we have ��=2�.

c) If �>� and � <� such that ��>� then ��= ��.

d) If �>�, 8� <� ��<� , and cof(�)>� then ��=� .

e) If �>�, 8� <� ��<� , and cof(�)6� then ��= j(�) .

Proof. a) and b) follow immediately from earlier results.
c) ��6��6 (��)�= ��.
d) cof(�)>� implies that every function from � into � is bounded by some ordinal � <� . Hence

� 6 �� = cardff jf :�!�g

= card

 [
�<�

ff jf :�! �g
!

6
X
�<�

card(ff jf :�! �g)

=
X
�<�

card(ff jf :�! card(�)g)

=
X
�<�

card(�)�

6
X
�<�

�

= �:
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e) Let (�iji < cof(�)) be a strictly increasing sequence which is co�nal in � . De�ne a function

G: ��!�i<cof(�)
��i

by

f 7! (fiji < cof(�))

where

fi(�) =

�
f(�), if f(�)< �i
0, else

Then G is injective: Let f ; g 2 ��, f =/ g . Take � such that f(�) =/ g(�) and take i such that
f(�); g(�)< �i . Then fi(�) = f(�)=/ g(�)= gi(�), fi=/ gi , and hence G(f)=/ G(g).
Using G we get

j(�) = �cof(�) 6 �� 6
Y

i<cof(�)

card(�i)�

6
Y

i<cof(�)

�

= �cof(�) = j(�)
�

De�nition 128. (Hausdor�) The generalized continuum hypothesis (GCH) is the statement

8�2Card 2�=�+:

This is the �minimal� hypothesis in view of Cantor's 2� > �+. The GCH generalizes Cantor's
continuum hypothesis CH and also the hypothesis 2@1 = @2 also expressed by Cantor. Since CH
is independent of the axioms of set theory, GCH is independent as well. Indeed the continuum
function is hardly determined by the axioms of ZFC and one can for example have

2@0=@73; 2@1=@2015 ; :::
Obviously

Lemma 129. GCH implies that 8�2Card j(�)=�+.

Thus GCH also determines all values of the �� function. Axiomatic set theory proves that one
can assume GCH without the danger of adding inconsistencies to the system ZFC: a model of
the ZFC axioms can be modi�ed into a model of ZFC + GCH. The consequences of GCH for
cardinal exponentiation can be readily described.

Theorem 130. Assume GCH. Then for �; �2Card �� is determined as follows:

a) For �< cof(�): ��=� .

b) For cof(�)6�6� : ��=�+.
c) For �>� : ��=�+.

Proof. a)

� 6 ��

= cardff jf :�!�g
= card

[
�<�

ff jf :�! �g

6
X
�<�

card(�)�

6
X
�<�

�

= �:
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b) By GCH and König's theorem, �cof(�)=�+. Thus

�+=�cof(�)6��6��=2�=�+:
c)

�+=2�6��6��=2�=�+: �

Question 131. Is every (in�nite) cardinal product
Q
i<��i also determined by GCH?

16 Closed unbounded and stationary sets

The continuum function � 7! 2� satis�es the laws

a) �6�!2�6 2�

b) cof(2�)>�

Axiomatic set theory shows that for regular cardinals � these are the only laws deducible from
ZFC: for (adequate) functions F : Card! Card satisfying a) and b) for regular cardinals there is
a model of set theory in which

� regular!2�=F (�):

So there remains the consideration of 2� for singular cardinals �. Indeed singular cardinal expo-
nentiation satis�es some interesting further laws and is an area of present research. To prove a
few of these laws we have to extend the apparatus of uncountable combinatorics.

De�nition 132. Let �2Card and C �� . C is unbounded in � if

8�<�9� 2C�< �:

C is closed in � if

8�<� (� is a limit ordinal ^C \� is unbounded in �!�2C):

Thus C contains its limit points <� .
C is closed unbounded, or cub in �, if C is unbounded in � and closed in � .

Exercise 28. De�ne a topology on � such that the closed sets of the topology are exactly the closed sets in
the sense of the previous de�nition.

Lemma 133. Let � 2Card, cof(�)> !1 and C;D be closed unbounded in � . Then C \D is cub
in � .

Proof. C \D is closed in � : Let � < � be a limit ordinal and a limit point of C \D. Then � is
a limit point of C and �2C. Similarly �2D and together �2C \D .
C \D is unbounded in � : Let �<�. De�ne a sequence (�njn<!) by recursion:

�n=

�
the least element of C which is larger than �; �0; :::; �n¡1 in case n is even
the least element of D which is larger than �0; :::; �n¡1 in case n is odd

Let � =
S
n<! �n . � is a limit ordinal >� . � < � since cof(�) > !1 . By construction, � is a

limit point of C and of D. Hence � 2C \D. �

Exercise 29. Let � 2Card, cof(�)> !1 . Let (Ciji < 
) be a sequence of sets Ci which are closed unbounded
in � and let 
 < cof(�) . Then

T
i<
Ci is cub in � .

De�nition 134. Let �2Card, cof(�)>!1 . The closed unbounded �lter on � is

C�= fX ��jthere is a set C �X which is closed unbounded in �g:
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Lemma 135. C� is a cof(�)-complete �lter on � , i.e.

a) ;=/ C��P(�)

b) ;2/ C�
c) X 2C�^X �Y ��!Y 2C�
d) X 2C�^Y 2C�!X \Y 2C�
e) 
 < cof(�)^fXiji < 
g�C�!

T
i<
Xi2C�

Proof. c) and d) follow from Lemma 133 and Exercise 29. �

A �lter captures a notion of �large set�. Even intersections of large sets are large, so that certain
contructions can be continued on large sets. Largeness also yields notions of �small� and of �not
small�, called �non-stationary� and �stationary�.

De�nition 136. Let �2Card, cof(�)>!1 .
a) X �� is non-stationary in � if � nX 2C� . We call

NS�= fX j� nX 2C� g
the non-stationary ideal on � .

b) X �� is stationary in � if X 2/ NS� .

Lemma 137. X �� is stationary in � i� X \C =/ ; for every cub C �� .

Proof. X is stationary i� X 2/ NS� i� � nX 2/ C� i� there is no C � � cub such that C � � nX
i� for every cub C �� C *� nX i� for every cub C �� X \C =/ ; . �

Lemma 138. Every set in C� is stationary.

Lemma 139. NS� is a cof(�)-complete ideal on � , i.e.

a) ;=/ NS��P(�)

b) �2/ NS�

c) X 2NS�^Y �X ��!Y 2NS�
d) X 2NS�^Y 2NS�!X \Y 2NS�

e) 
 < cof(�)^fXiji < 
g�NS�!
S
i<
Xi2NS�

Proof. e) Let 
 < cof(�) ^ fXiji < 
g � NS� . Then f� n Xiji < 
g � C� . By Lemma 133,T
i<
 (� nXi)2C� . Hence [

i<


Xi=� n
\
i<


(� nXi)2NS� :

�

For regular uncountable � these �lters and ideals have even better completeness properties.

De�nition 140. Let � be a regular uncountable cardinal. For a sequence (Xi)i<� of subsets of
� de�ne

a) the diagonal intersection i

i<�

Xi= f� <� j 8i < � � 2Xig;

b) the diagonal union h

i<�

Xi= f� <� j 9i < � � 2Xig:
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Lemma 141. Let � be a regular uncountable cardinal. Then

a) C� is closed under diagonal intersections, i.e.,

fXiji <�g�C�!
i

i<�

Xi2C� ;

b) NS� is closed under diagonal unions, i.e.,

fXiji <�g�NS�!
h

i<�

Xi2NS� :

Proof. a) Let fXiji < �g�C� . For i < � choose Ci2C� such that Ci�Xi . Then
i

i<�

Ci�
i

i<�

Xi

and it su�ces to show that
a
i<�Ci is cub in � .a

i<�Ci is closed in � : Let � < � be a limit ordinal and a limit point of
a
i<�Ci . Consider j <

� . By the de�nition of the diagonal intersection i
i<�

Ci

!
n (j+1)�Cj :

Hence � is a limit point of Cj and �2Cj by the closure of Cj . Thus 8j < � � 2Cj and thus �2a
i<�Ci .a
i<�Ci is unbounded in � : Let � < �. De�ne a sequence (�njn < !) by recursion: set �0 = �

and

�n+1= the least element of
 \
i<�n

Ci

!
n (�n+1) :

Let � =
S
n<! �n . � is a limit ordinal >� . � <� since cof(�)> !1 . We show that � 2

a
i<�Ci .

Consider j < � . Take n<! such that j < �n . Then

f�k jn<k <!g�Cj

and � is a limit point of Cj . � 2Cj by the closure of Cj . Hence 8j < � � 2Cj . �

Sets in an ideal behave similar to sets of (Lebesgue-)measure 0. Then sets not in the ideal have
�positive measure�. So stationary sets are positive with respect to the non-stationary ideal.
Closure under diagonal intersections corresponds to a surprising canonization property of certain
functions.

De�nition 142. A function f :Z!Ord where Z �Ord is regressive if

�2Z n f0g!f(�)<�:

Exercise 30. If 
 >! then there is no regressive injective function f : 
! 
 .

Theorem 143. (Fodor's Lemma) Let � be a regular uncountable cardinal and let f : S ! � be
regressive, where S is stationary in � . Then there is a stationary T � S such that f � T is con-
stant.

Proof. Assume that for every i < � f¡1[fig] is not stationary. So for every i < � choose a Ci
cub such that 8j 2T \Ci f(j) =/ i . The set

C =
i

i<�

Ci

is cub in �, and so there is �2C \T , �> 0. But then for all i < � � 2T \Ci and f(�) =/ i. But
then f(�)>� , contradicting the regressivity of f . �
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We now give examples of closed unbounded and stationary sets.

Lemma 144. Let � be an uncountable regular cardinal and let C be cub in � . The derivation
C 0 of C is de�ned as

C 0= f�2C j� is a limit point of Cg:
Then C 0 is cub in � .
On can form iterated derivations C(i) for i <� by

C(0) = C

C(i+1) = (C(i))0

C(�) =
\
i<�

C(i) for limit ordinals �<�

Every C(i) is cub in � .

The lemma implies immediately:

Lemma 145. Let Lim be the class of limit ordinals. Let � be an uncountable regular cardinal.
Then Lim\ � is cub in � .

Topologically these derivation correspond to the process of omitting isolated points. Such iter-
ated derivations were �rst studied by Cantor.

Example 146. For � an uncountable regular cardinal let (�)<! be the set of all �nite sequences
from � , i.e., (�)<!= fu j 9n<! u:n!�g. For h: (�)<!!� let

Ch= f� <� jh[(�)<!]� �g

be the set of ordinals <� which are closed under h . Then Ch is cub in � . Given � < � , a closed
ordinal � >� can be found as �=

S
n<!�n where �0=� and

�n+1=
¡[

h[(�n)
<!]
�
+1<�:

Conversely, if C is cub in � one can de�ne g:�! � by

g(�) = the smallest element of C which is >�:

If we de�ne Cg as above then

Cg= f0g[C 0:

Lemma 147. Let �<� be uncountable regular cardinals. Then

E�
�= f�<� j cof(�)= �g

is stationary in � .

Proof. Let C be cub in � . De�ne a strictly increasing �+ 1-sequence (�i)i6� of elements of C
by

�i= the smallest element � of C such that 8j < i �j<�:

Then ��<� and cof(��)= � . Hence C \E��=/ ; . �

So E!
@2 and E!1

@2 are disjoint stationary subsets of @2 . Actually one can �nd a lot of disjoint sta-
tionary sets, using Fodor's lemma.

Theorem 148. Let � be a successor cardinal and let S �� be stationary. Then there is a family
(Si j i <�) of pairwise disjoint stationary subsets of S .

Proof. Let � 2 Card such that � = �+. For each � < � , � =/ 0 choose a surjective function f�:
�! � .
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�

�

f��

i; i�

�

(1) For every �<� there is some i <� such that f� 2S j f�(i)>�g is stationary in � .
Proof . Assume for a contradiction that there is � < � such that for any i < � the set f� 2
S j f�(i)>�g is non-stationary in � . Choose cub sets Ci such that

f� 2S j f�(i)>�g\Ci= ;:

The set
T
i<�Ci is cub in � . Let � 2S \

T
i<�Ci and � >� . Then f�(i)<� for all i <� , which

contradicts the surjectivity of f�:�! � . qed(1)
(2) There is some i�<� such that for every �<� the set f� 2S j f�(i�)>�g is stationary in � .
Proof . By (1), we can �nd for every � < � some i� < � such that f� 2 S j f�(i�) > �g is sta-
tionary in � . By the pidgeon principle there is an unbounded subset Z � � and an i� < � such
that 8� 2 Z i� = i� . So for every � 2 Z the set f� 2 S j f�(i�) > �g is stationary in � , which
proves the claim. qed(2)
For � <� set S�= f� 2S j f�(i�)= �g.
(3) The set of � <� , where S� is stationary in � , is unbounded in � .
Proof . Assume not and let � < � such that S� is stationary implies � < � . By (2), T = f� 2
S j f�(i�) > �g is stationary in � . The function � 7! f�(i�) < � is regressive on T . By Fodor's
Theorem the function is constant on a stationary subset of T . Let �, �6 � < � be the constant
value. Then S�= f� 2S j f�(i�)= �g is stationary in � , contradiction. qed(3)
So there are �-many � < � such that S� is stationary. Note that these S� are pairwise disjoint
subsets of S. �

Abstractly this means that every NS�-positive set can be split into �-many NS�-positive sets.
Consider the property: there are �-many NS�-positive sets (Si j i < �) which are almost disjoint
with respect to NS� : i=/ j!Si \ Sj 2NS� . If this property is false, we say that the ideal NS� is
�-saturated . The property that NS@1 is @2-saturated is not decided by ZFC. That property has
many consequences and is central in modern set theoretic research.

17 Silver's Theorem

The value of 2� for regular cardinals � is hardly determined by the value of 2� at other car-
dinals. The situation at singular cardinals is di�erent, the �rst result in this area was proved by
Jack Silver. We shall use the notion of almost disjoint functions.
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De�nition 149. Let � be a limit ordinal. Two functions f ; g: �! V are almost disjoint if there
is � < � such that 8� (� < � < �!f(�) =/ g(�)). A set F �� V of functions is almost disjoint if
f and g are almost disjoint for any f ; g 2F, f =/ g .

Lemma 150. a) There is no almost disjoint family F � !2 of size 3.
b) There is an almost disjoint family F � !! of size 2@0.

Proof. a) is obvious. b) Take h: (!)<!$! . For a:!! 2 de�ne fa:!!! by

fa(n) =h(a �n):

Consider functions a; b: !! 2 , a =/ b . We show that fa and fb are almost disjoint. Take n < !
such that a �n=/ b �n . Then for n6m<! we have

fa(m)=h(a �m)=/ h(b �m) = fb(m):

Thus ffa j a2 !2g is an almost disjoint family of size 2@0. �

Theorem 151. (Silver) Let ! < � = cof(�) < � 2 Card. Let 2� = �+ for all ! � � 2 � \ Card.
Then 2�=�+.

So let us assume that ! < � = cof(�) < � 2 Card and 2� = �+ for all ! � � 2 � \ Card. Fix a
strictly increasing sequence (�� j � < �) which is co�nal in � and continuous, i.e., for any limit
ordinal � <� we have ��=

S
�<��� .

Lemma 152. Assume that �� < � for all � < � . Let F �
Q
�<�A� be almost disjoint, where

S0= f�<� j card(A�)���g is stationary in � . Then card(F)��.

Proof. Assume w.l.o.g. that A���� for �2S . For f 2F de�ne hf:S0!� by

hf(�): = the least � such that f(�)2��.

Then h � (S0 \ Lim) is regressive. So, by Fodor's lemma, one can choose a stationary Sf � S0 \
Lim such that h is constant on Sf. Hence f is, on Sf , bounded in �. If f � Sf = g � Sg, then f =
g, since F is almost disjoint. So f 7! f � Sf is one-to-one. For a �xed T � � , the set of functions
on T that are bounded in � has cardinality supf��j � < �g = � by the cardinality assumption.
Also there are <� such T , since card(}(�))= 2�<�. Hence card(F)����=� . �

Lemma 153. Let ! < � = cof(�) < � 2 Card, and assume that �� < � for all � < � . Let F �Q
�<�A� be almost disjoint, card(A�)���+. Then card(F)��+.

Proof. Assume w.l.o.g. that A����+. Let S �� be stationary and f 2F . Let

Ff ;S= fg 2Fj (8�2S)(g(�)� f(�))g:

The map g 7!g � S injects Ff ;S into
Q
�2S (f(�) + 1) where card(f(�) + 1) � ��. By the pre-

vious lemma, card(Ff ;S)�� .
De�ne

Ff =
[
fFf ;SjS �� is stationaryg:

Since there are <� stationary subsets of � ,
(1) card(Ff)��.
We construct a sequence (f�j � < �) of functions in F by induction such that F =

S
fFf�j � < �g.

Take an arbitrary f02F .
If (f�j � < �) is already de�ned, choose f� 2

S
fFf�j v < �g if possible. If there is no such f�, set

�= � and stop.
(2) � ��+.
Proof . Assume that f�+ is de�ned. If � < �+ then f�+ 2/ Ff� . So f�j f�+(�)� fv(�)g is non-sta-
tionary and f�j f�(�) � f�+(�)g 2 C�. Thus fv 2 F�+ for all v < � , and card(Ff

�+
) > �+. This

contradicts (1). qed(2)
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Altogether

card(F)= card(
[
fFf�j � < �g)6

X
�<�

card(Ff�)6
X
�<�

�6� ��+=�+:

�

Proof. (Silver's Theorem) De�ne a map from P(�) into
Q
�<�}(��) by

X 7!fX=(X \�� j�<�):

If X =/ Y then fX and FY are almost disjoint. So

F = ffX jX 2P(�)g�
Y
�<�

}(��)

is an almost disjoint family of functions. The GCH below � implies that card(}(��)) = 2�� =
��
+ . Moreover �� 6 max (�; �)max(�;�) = max (�; �)+ < � for all � < � . By Lemma 153,

card(F)6�+. Hence
�+6 2�= card(P(�))6 card(F)6�+

�

Exercise 31. Use the methods of the proof of Silver's Theorem to show

a) Let F �
Q
�<�A� be almost disjoint, card(A�)���

++. Then card(F)��++.

b) Let ! <�= cof(�)<�2Card. Let 2�= �++ for all ! � �2�\Card. Then 2�6�++.

18 Ranks of functions

The previous exercise indicates the possibility that one may generalize Silver's theorem by a
kind of induction on the height of the continuum function below � . This idea will lead to the
Galvin-Hajnal theorem. Let � = @� be a singular strong limit cardinal (i.e., � < @�!2� < @�)
with ! <�= cof(@�)< @� . Let (�� j � < �) be a strictly increasing continuous sequence co�nal in
@� . The continuum function below @� determines a function '0:�!� by

2��=��
+'0(�);

where ��
+'0(�)=@�+'0(�) if ��=@� .

Let us now study functions ': � ! � along appropriate wellfounded relations. Fix a regular
uncountable cardinal � and some limit ordinal � .

De�nition 154. For a stationary set S �� de�ne a relation <S on functions ';  :�!� by

'<S i� there is a cub C �� such that 8� 2S \C '(�)<  (�):

Equivalently one can say that the set of � where ' and  behaves di�erently is very small:

'<S i� f� 2S j '(�)>  (�)g2NS� :

Lemma 155. <S is a strongly wellfounded relation on �� .

Proof. Assume not. Then, using AC, there is a strictly descending !-sequence

 0>S 1>S 2>S ::::

Choose cub sets C0; C1; :::� � such that 8� 2 S \ Cn  n(�)>  n+1(�) . Since
T
n<!Cn is cub in

� one can take � 2S \
T
n<!Cn . Then

 0(�)>  1(�)>  2(�)> ::::

is a descending !-sequence of ordinals. Contradiction. �
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De�nition 156. De�ne the <S-rank k kS 2Ord of  2 �� by recursion on <S :

k kS=
[
fk'kS+1 j '<S g:

We also write k k instead of k k� .

We prove some properties of this rank.

Lemma 157.

a) If S �T are stationary in � then '<T implies '<S .

b) If S �T are stationary in � then k kT 6 k kS .
c) If S; T are stationary in � then

k kS[T =min (k kS ; k kT):

d) If S is stationary and N is nonstationary then '<S[N i� '<S .

e) If S is stationary and N is nonstationary then

k kS[N = k kS :

Proof. a) Let ' <T  . Take C � � cub such that 8� 2 T \ C '(�) <  (�). Then 8� 2 S \ C
'(�)< (�) and so '<S .
b) By induction on <T .

k kT =
[
fk'kT +1 j '<T g

6
[
fk'kS+1 j '<T g by the inductive assumption

6
[
fk'kS+1 j '<S g by a)

= k kS :

c) By b) k kS[T 6 k kS ; k kT and so

k kS[T 6min (k kS ; k kT):

Assume that the equality is false and consider  <S[T -minimal such that

k kS[T <min (k kS ; k kT):

Since k kS[T 2k kS=
S
fk'kS+1 j '<S g take  S<S such that k kS[T < k SkS+1 , i.e.,

k kS[T 6 k SkS; take CS � � cub such that 8� 2 S [ CS  S(�) <  (�). Similarly take  T <T  
such that k kS[T 6 k T kT and some CT � � cub such that 8� 2 T [CT  T(�)<  (�). De�ne ':
�!� ,

'(�) =

8>>>>>><>>>>>>:
 S(�) if � 2S nT
 T(�) if � 2T nS
max ( S(�);  T(�)) if � 2S \T
0 else

For � 2 (S [T )\ (CS \CT) holds '(�)<  (�), thus '<S[T . Since 8� 2S  S(�)6 '(�) we have
k SkS6 k'kS . Similarly k T kT 6 k'kT . By the <S[T -minimality of  we have

k'kS[T =min (k'kS ; k'kT)>min (k SkS ; k T kT)> k kS[T
contradicting '<S[T .
d) '<S[N i� f� 2S [N j '(�)>  (�)g2NS� i� f� 2S j '(�)>  (�)g2NS� i� '<S .
e) follows directly from d). �

Note that k k = k k� 6 k kS . This motivates to exclude stationary sets S which do not com-
pute the �correct� rank of  .
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De�nition 158. Let

I =NS�[fS jS is stationary and k k< k kSg:

Lemma 159. I is an ideal on � .

Proof. I is a non-empty family of subsets of � and �2/ I .
I is closed under subsets: let A2 I and B �A . If B is nonstationary then B 2 I . If B is sta-
tionary then k kB> k kA> k k and B 2 I .
I is closed under unions: let A 2 I and B 2 I . If A and B are nonstationary then A [ B 2
NS�� I . If A is stationary and B is nonstationary then by e) of Lemma 160 k kA[B= k kA>
k k and A[B 2 I . If A is stationary and B is stationary then by c) of Lemma 160

k kA[B=min (k kA; k kB)> k k
and A[B 2 I . �

Lemma 160.

a) If k k=0 then f� <� j  (�)= 0g is stationary in � .

b) If k k is a successor ordinal then

f� <� j  (�) is a successor ordinal g2/ I :

c) If k k is a limit ordinal then

f� <� j  (�) is a limit ordinal g2/ I :

Proof. a) Let k k=0. If f� <� j  (�)= 0g is nonstationary there is a cub C � � such that 8� 2
C  (�)> 0 . But then  >� const0 and k k> 1 . Contradiction.
b) Let k k be a successor ordinal but assume that

f� <� j  (�) is a successor ordinalg2 I :
Then

S= f� <� j  (�) is a limit ordinalg2/ I :

By the de�nition of I we get that k kS = k k is also a successor ordinal. By the de�nition of
k kS take '<S such that k kS= k'kS+1 : Take a cub set C � � such that 8� 2 S \C '(�)<
 (�). De�ne '+:�!� by '+(�)= '(�)+ 1 . Since  (�) is a limit ordinal for � 2S :

8� 2S \C '(�)< '+(�)< (�):

Then '<S'+<S and k'kS< k'+kS< k kS , contradicting k kS= k'kS+1 .
c) Let k k be a limit ordinal but assume that

f� <� j  (�) is a limit ordinalg2 I :
Then

S= f� <� j  (�) is a successor ordinalg2/ I :

By the de�nition of I we get that k kS= k k is also a limit ordinal. De�ne  ¡:�!� by

 ¡(�)=

�
 (�)¡ 1 , if � 2S
0 , else

Consider a function ' <S  . Take a cub set C � � such that 8� 2 S \ C '(�) <  (�) and thus
8� 2S \C '(�)6  ¡(�). Then

k'kS= k'kS\C6 k ¡kS\C= k ¡kS< k kS
This means that

k kS =
[
fk'kS+1 j '<S g

6 k ¡kS+1
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Since k ¡kS<k kS this implies

k k= k kS= k ¡kS+1

is a successor ordinal, contradiction. �

19 The Galvin Hajnal Theorem

Theorem 161. Let �= @� be a singular strong limit cardinal (i.e., � < @�!2�< @�) with ! <
�= cof(@�)<@� . Then

2@�<@

where 
=(2card(�))+.

Note that if �=@� the theorem claims that

2�<@(2�)+
which is obviously true.

Lemma 162. Let  : �! � and let F �
Q
�<�A� be an almost disjoint family of functions such

that

card(A�)6��
+ (�)

for � <� . Then card(F)6@�+k k .

Proof. By induction on k k2Ord:
k k = 0 : Then by Lemma 160(a)  vanishes on a stationary set S � � and Lemma 152 proves
the case.
k k is the successor ordinal 
+1: by Lemma 160(b)

S0= f� <� j  (�) is a successor ordinalg2/ I :

We may assume that A����
+ (�) for � <� .

(1) Let f 2F and S �S0 , S 2/ I . Then the set

Ff ;S= fg 2F j 8� 2S g(�)6 f(�)g
has cardinality 6@�+
 .
Proof. De�ne ':�!� by

'(�) =

�
 (�)¡ 1 , if � 2S
 (�) , else

Since S 2/ I ,
k'k6 k'kS< k kS= k k= 
+1

and k'k6 
 . Now
Ff ;S �

Y
�<�

f(�);

and since f(�)<��
+ (�) we have

card(f(�) +1)6��
+'(�)

:

By the induction hypothesis, card(Ff ;S)6@�+k'k6@�+
 . qed(1)
(2) Let f 2F . Then the set

Ff = fg 2F j 9S �S0 (S 2/ I ^8� 2S g(�)6 f(�))g

has cardinality 6@�+
 .
Proof. Since @� is a strong limit cardinal, there are at most 2�<@� many S �S0 . Hence

Ff =
[

S�S0;S2/I 

Ff ;S
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is a union of less than @� many sets of size 6@�+
 . qed(2)
Like in the proof of Lemma 153 we construct a sequence (f�j � < �) of functions in F by induc-
tion such that F =

S
fFf�j � < �g.

Take an arbitrary f02F .
If (f�j � < �) is already de�ned, choose f� 2

S
fFf�j � < �g if possible. If there is no such f�, set

� = � and stop.
(3) � 6@�+
+1.
Proof . Assume that f@�+
+1 is de�ned. Set � = @�+
+1 . Consider � < � . f� 2/ Ff� and so there
is no S �S0 , S 2/ I such that 8� 2S f�(�)6 f�(�). This means that

f� 2S j f�(�)6 f�(�)g2 I 
and

f� 2S j f�(�)< f�(�)g2/ I :

This implies that f� 2 Ff� and thus ff� j � < �g � Ff� . Hence card(Ff�) > � = @�+
+1 , which
contradicts (2). qed(3)
Now

card(F)= card
¡[
fFf�j � < �g

�
6
X
�<�

card(Ff�)6
X
�<�

@�+
6
X

�<@�+
+1

@�+
=@�+
+1 :

Finally consider the case that k k is a limit cardinal. By Lemma 160(c),

S= f� <� j  (�) is a limit ordinalg2/ I :

Again we may assume that A����
+ (�) for � <� .

For functions ':�!� de�ne

F'=
�
f 2F j 8� <� f(�)2 ��

+'(�)	:
Consider f 2F . De�ne ':�!� by taking '(�) minimal such that

f(�)2��
+'(�)

:

Obviously f 2F' . Moreover '<S . Since S 2/ I we have

k'k6 k'kS< k kS= k k:
By the induction hypothesis

card(F')6@�+k'k<@�+k k :
Thus

F �
[
fF' j 9' (':�!�^ card(F')<@�+k k)g

and

card(F)6
X

':�!�

@�+k k6 card(��) � @�+k k6@� � @�+k k=@�+k k :

�

We are now able to prove

Theorem. Let � = @� be a singular strong limit cardinal (i.e., � < @�!2� < @�) with ! < � =
cof(@�)<@� . Then

2@�<@

where 
=(2card(�))+.

Proof. De�ne an injective map from P(�) into
Q
�<�}(��) by

X 7!fX=(X \ �� j � <�):
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If X =/ Y then fX and FY are almost disjoint. So

F = ffX jX 2P(�)g�
Y
�<�

}(��)

is an almost disjoint family of functions. Since � is a strong limit cardinal, there is a function  :
�!� such that

card(}(��))6��
+ (�)

for � <� . By the previous lemma

card(P(�))6 card(F)6@�+k k :

Since card(��) 6 card(��) = 2card(�), the rank function k:k on �� is bounded by 
 = (2card(�))+.
Hence k k< 
 and

2@�= card(P(�))6@�+k k<@�+
=@
 :
�

If, e.g., @!1 is a strong limit cardinal then by this theorem

2@!1<@(2@1)+<@@!1 :

So the continuum function at singular cardinals can be in�uenced by the behaviour below that
cardinal. In particular instances the bounds for the continuum function can be improved. With
considerably more e�ort one can also deal with singular cardinals of countable co�nality and
prove, e.g.: if @! is a strong limit cardinal then (Shelah)

2@!<@@4 :

20 Measurable cardinals

The results of the previous section used �lters and ideals to express that certain sets are large or
small respectively. There are also intermediate notions of size: a set X is of �positive measure� if
it is not in the ideal under consideration. One may imagine that the measure of X is some pos-
itive real number. This poses the question, which kinds of �measures� do or can exist. Ideally
every set should be given some non-negative number as a measure.
This approach is also motivated by the classical theory of Lebesgue measure on the real line and
related spaces. Recall that the 1-dimensional Lebesgue measure on R is a function l: 
 ! R [
f1g taking values in the extended real line with the properties:

a) 
�P(R) contains all intervals and is closed under complements and countable unions;

b) l([0; 1])= 1;

c) l is countably additive (�-additive): if fXi j i <!g�
 is a pairwise disjoint family then

l

 [
i<!

Xi

!
=
X
i<!

l(Xi);

d) l is translation invariant : if X 2
 and d2R then X + d= fx+ d jx2Xg2
 and

l(X + d)= l(X):

Theorem 163. There is a set Z � [0; 1] which is not Lebesgue-measurable, i.e., Z 2/ 
 .

Proof. Let

A= fQ+ d j d2Rg:
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(1) A consists of pairwise disjoint nonempty sets which intersect the interval [0; 1).
Proof . Assume that x2 (Q+ d)\ (Q+ e). Take rational numbers r; s2Q such that

x= r+ d= s+ e:

Then d=(s¡ r) + e2Q+ e and

Q+ d= ft+ d j t2Qg= ft+(s¡ r) + e j t2Qg�Q+ e:

Similarly Q+ e�Q+ d and so Q+ e=Q+ d .
Consider d2R . Take an integer z 2Z such that z6 d< z+1 . Then

¡z+ d2 (Q+ d)\ [0; 1)
qed(1)
By the axiom of choice let Z be a choice set for the set

f(Q+ d)\ [0; 1) j d2Rg:

(2) If q; r 2Q and q=/ r then (Z + q)\ (Z + r) = ; .
Proof . Assume not, and take z0; z12Z such that z0+ q= z1+ r . Then z02Q+ z0 and z12Q+
z0 . Since Z is a choice set, z0= z1 . But then q= r . Contradiction. qed(2)
(3) [0; 1]�

S
q2[¡1;1]\QZ + q .

Proof . Let d 2 [0; 1]. Let z 2 Z \ (Q+ d) \ [0; 1). Take q 2Q such that z = q + d . Then d= z +
(¡q) where jq j6 1 . qed(3)
Assume now that Z 2
 . Since Z � [0; 1] we have l(Z)6 1 .
Case 1 : l(Z)= 0. Then

1= l([0; 1])6 l
 [
q2[¡1;1]\Q

Z + q

!
=

X
q2[¡1;1]\Q

l(Z + q)=
X

q2[¡1;1]\Q
l(Z)=

X
q2[¡1;1]\Q

0=0 ;

contradiction.
Case 2 : l(Z)= "> 0. Then

l

 [
q2[¡1;1]\Q

Z+ q

!
6 l([0; 2])= 2

but on the other hand

l

 [
q2[¡1;1]\Q

Z + q

!
=

X
q2[¡1;1]\Q

l(Z + q)=
X

q2[¡1;1]\Q
l(Z) =

X
q2[¡1;1]\Q

" = 1 :

�

We shall now consider measures which are de�ned on all subsets of a given set, but we do not
require a geometric structure on the set and in particular no translation invariance. We also
restrict our consideration to �nite measures.

De�nition 164. A measure on a set X is a function �:P(X)! [0; 1] such that

a) �(;) =0 and �(X)= 1 ;

b) l is countably additive (�-additive): if fXi j i < !g � P(X) is a pairwise disjoint family
then

�

 [
i<!

Xi

!
=
X
i<!

�(Xi):

� is called non-trivial if �(fxg) = 0 for every x 2X . � is 2-valued if ran(�) = f0; 1g, otherwise
� is real-valued.

Note that if f : �$ X is a bijection then a measure � on X immediately induces a measure �0

on � by

�0(A)= �(f [A]):

So we can focus our attention on measures on cardinals.
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Lemma 165. Every 2-valued measure � on R is trivial, i.e., there is some x2R such that

�(A)= 1 i� x02A:

Proof. Identify R with !2 . De�ne x0:!! 2 by

x0(n) =1 i� �(fx2 !2 jx(n) =1g)= 1:

By the �-additivity of � ,

�(!2 n fx0g) = �

 [
n<!

fx2 !2 jx(n)=/ x0(n)g
!
6
X
n<!

�(fx2 !2 jx(n)=/ x0(n)g)=
X
n<!

0=0 :

So �(fx0g)= 1 . �

Assume that � is the smallest cardinal which has a non-trivial measure � . A set A � � with
�(A)> 0 splits if there is a partition A1; A2�A such that A1[A2=A , A1\A2= ; , 0< �(A1)<
�(A) and 0< �(A2)< �(A).
Case1 . There is a set A0�� with �(A0)> 0 which does not split.
Then de�ne �:P(A0)! 2 by

�(A) =1 i� �(A)= �(A0):

(1) � is a 2-valued non-trivial measure on A0 .
Proof . We have to check �-additivity. Let fXi j i < !g�P(A0) be a pairwise disjoint family. By
the �-additivity of �

�

 [
i<!

Xi

!
=
X
i<!

�(Xi):

Then

�

 [
i<!

Xi

!
=1 i� �

 [
i<!

Xi

!
= �(A0) i� 9i <! �(Xi)= �(A0) i� 9i <! �(Xi)= 1 :

Thus

�

 [
i<!

Xi

!
=
X
i<!

�(Xi):

qed(1)
By the minimality of � we have card(A0)=� .

Case 2 . Every set A�� with �(A)> 0 splits. In this case we call the measure � atomless.
We �rst show that indeed A splits into relatively large subsets:
(2) Every set A�� with �(A)> 0 possesses a subset B �A such that 1

3
�(A)6 �(B)6 2

3
�(A).

Proof . Assume not. Then

�= sup
�
�(B) jB �A^�(B)6 1

2
�(A)

�
6 1
3
�(A) :

For n2! n f0g choose Bn�A such that �¡ 1

n
<�(Bn)6 �.

We show by induction on n that

�(B1[B2[ :::[Bn)6 � :

Assume that �(B1[B2[ :::[Bn)6 � .
Assume for a contradiction that �(B1[B2[ :::[Bn[Bn+1)>� . Then

�(B1[B2[ :::[Bn[Bn+1)6 �(B1[B2[ :::[Bn)+ �(Bn+1)6 �+ �6
2

3
�(A):

By the initial assumption we cannot have �(B1[B2[ :::[Bn[Bn+1)= 2

3
�(A). Hence

� < �(B1[B2[ :::[Bn[Bn+1)<
2
3
�(A)

and

�(A n (B1[B2[ :::[Bn[Bn+1))>
1
3
�(A)> � :
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But then B1 [ B2 [ ::: [ Bn [ Bn+1 or its relative complement A n (B1 [ B2 [ ::: [ Bn [ Bn+1)
would be a counterexample to the de�nition of � . Thus �(B1[B2[ :::[Bn[Bn+1)6 � . The �-
additivity of � implies

�

 [
16n<!

Bn

!
= �

 [
16n<!

(Bn n (B1[ :::[Bn¡1))
!

=
X

16n<!
�(Bn n (B1[ :::[Bn¡1))

= lim
m!1

X
n=1

m

�(Bn n (B1[ :::[Bn¡1))

= lim
m!1

�

 [
n=1

m

(Bn n (B1[ :::[Bn¡1))

!
= lim

m!1
�(B1[ :::[Bm)

= � :

Set B� =
S
16n<!Bn . Then �(B�) = � . A n B� splits, so take a partition A n B� = C [_ D such

that 0< �(C)6 �(D)< �(A nB�) = �(A)¡ � . By the initial assumption we have �(C)< 1

3
�(A)

or �(C)> 2

3
�(A), and �(D)< 1

3
�(A) or �(D)> 2

3
�(A).

If �(D)<
1

3
�(A) then

�(A) = �(B�[C [D)= �(B�)+ �(C)+ �(D)<
1
3
�(A)+

1
3
�(A)+

1
3
�(A)= �(A);

contradiction. Hence �(C)< 1

3
�(A) and �(D)> 2

3
�(A) . But then

� < �(B�[C) = �(A nD) = �(A)¡ �(D)< �(A)¡ 2

3
�(A)<

1

2
�(A);

contradicting the de�nition of � . qed(2)
Recall the binary tree

<!2= fs j 9n<! s:n! 2g:

We construct a binary splitting A: <!2!P(�) of the underlying set � by recursion on the length
of the binary sequences. Put A(;) =A0= � . If A(s) =As� � is constructed, use (2) to choose a
splitting As=As0[_ As1 of As such that 1

3
�(As)6 �(As0)6 �(As1)6 2

3
�(As).

We shall pull the measure � back to a measure � on the reals. For X �R de�ne

X 0=
[
x2X

\
n<!

Ax�n :

De�ne �:P(!2)! [0; 1] by

�(X)= �(X 0):

First we show that the assignment X 7!X 0 preserves some set theoretic properties.
(3) ;0= ; .
(4) (!2)0=� .
Proof . Let �2 � . De�ne x:!! 2 recursively by

x(n)= 1 i� �2A(x�n)1 :
Then �2

T
n<!Ax�n and

�=
[
x2!2

\
n<!

Ax�n :

qed(4)
(5) (X \Y )0=X 0\Y 0.
Proof . Let �2 (X \Y )0. Take x2X \Y such that �2

T
n<!Ax�n . Then

�2
[
x2X

\
n<!

Ax�n=X 0

and also �2Y 0.
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Conversely consider � 2X 0 \ Y 0. Take x2X such that � 2
T
n<!Ax�n and take y 2 Y such that

� 2
T
n<!Ay�n . Assume for a contradiction that x=/ y . Take n 2 ! such that x � n= y � n and

x(n)=/ y(n). Then �2Ax�(n+1)\Ay�(n+1) although Ax�(n+1)\Ay�(n+1)= ; by construction.
Thus x= y 2X \Y and

�2
[

x2X\Y

\
n<!

Ax�n=(X \Y )0:

qed(5)
(6) (

S
i2IXi)

0=
S
i2IXi

0 .
Proof .  [

i2I
Xi

!0
=

[
x2

S
i2IXi

\
n<!

Ax�n

=
[
i2I

[
x2Xi

\
n<!

Ax�n

=
[
i2I

Xi
0 :

qed(6)

(7) � is a non-trivial measure on !2 .
Proof . �(;) = �(;0)= �(;) =0 and �(!2)= �((!2)0) = �(�)= 1 .
To check �-additivity consider a pairwise disjoint family fXi j i < !g � P(!2). Then fXi0 j i <
!g�P(�) is pairwise disjoint by (5) and (3). By the �-additivity of � and by (6),

�

 [
i<!

Xi

!
= �

 [
i<!

Xi
0
!
=
X
i<!

�(Xi
0)=

X
i<!

�(Xi):

To check non-triviality consider x2 !2 . Then

fxg0=
\
n<!

Ax�n :

One can show inductively that

�(Ax�n)6
�
2
3

�n
for all n<! . Thus

�(fxg0)6 �(Ax�n)6
�
2

3

�n
for all n and so �(fxg0)= 0: This implies

�(fxg) = �(fxg0)= 0:

qed(7)
Since � was assumed to be minimal carrying a non-trivial measure, we have �6 2@0 in Case 2 .
In both cases we can show a strong additivity property:
(8) The measure � on � is �-additive, i.e., for every pairwise disjoint family fXi j i < 
g � P(�)
with 
 <� we have

�

 [
i<


Xi

!
=
X
i<


�(Xi) ;

where the right hand side is de�ned asX
i<


�(Xi)= sup

(X
i2I0

�(Xi) j I0 is a �nite subset of 


)
:

Proof . Assume that � is not �-additive and let 
 < � be least such that there is a family
fXi j i < 
g�P(�) with

�

 [
i<


Xi

!
=/
X
i<


�(Xi) :
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Then 
 is an uncountable cardinal and

�

 [
i<


Xi

!
>
X
i<


�(Xi) :

Let
J = fi < 
 j �(Xi)> 0g� 
 :

We claim that J is at most countable. If J were uncountable, there must be some rational
number 1

n
such that �(Xi)>

1

n
for uncountably many i2J . But then

�

 [
i<


Xi

!
=1;

contradiction.
The �-additivity of � entails

�

 [
i2
nJ

Xi

!
= �

 [
i<


Xi

!
¡ �
 [
i2J

Xi

!
>
X
i<


�(Xi)¡
X
i2J

�(Xi)

=
X
i<


�(Xi)¡
X
i<


�(Xi)

= 0 :

So we may assume that all elements of the disjoint family fXi j i < 
g�P(�) have �-measure 0 .
We shall pull the measure � back to a measure � on 
 . Let �0= �(

S
i2
Xi). De�ne �:P(
)!

[0; 1] by

�(Y )=
1
�0

�

 [
i2Y

Xi

!
We show that � is a non-trivial measure on 
 .
�(;)= 1

�0
�(;) =0 and �(
)= 1

�0
�(
S
i2
Xi) =1 .

To check �-additivity consider a pairwise disjoint family fYj j j <!g�P(
). Then([
i2Yj

Xi j j <!
)
�P(�)

is pairwise disjoint. By the �-additivity of �

�

 [
j<!

Yj

!
=

1
�0

�

 [
i2

S
j<!

Yj

Xi

!

=
1

�0
�

 [
j<!

[
i2Yj

Xi

!

=
1
�0

X
j<!

�

 [
i2Yj

Xi

!

=
X
j<!

1

�0
�

 [
i2Yj

Xi

!
=
X
j<!

�(Yj) :

Finally, � is non-trivial since for every i < 


�(fig) = 1

�0
�

 [
j2fig

Xj

!
=

1

�0
�(Xi)= 0:

But the existence of � contradicts the minimality of � . qed(8)
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We can now draw conclusions from the previous arguments.

De�nition 166. A cardinal � is measurable if � is uncountable and possesses a 2-valued �-
additive non-trivial measure. A cardinal � is real-valued measurable is � is uncountable and
possesses a non-atomic �-additive non-trivial measure.

Recall that � is non-atomic, if every sets A � � with �(A)> 0 splits, i.e., there is a partition A1;
A2�A such that A1[A2=A , A1\A2= ; , 0< �(A1)< �(A) and 0< �(A2)< �(A).

Theorem 167. Let � be minimal such that � carries a non-trivial measure. Then either � is a
measurable cardinal, or �6 2@0 and � is a real-valued measurable cardinal.

Proof. If we are in Case 1 above, then � is measurable. In Case 2 , � 6 2@0 . By Lemma 165
there is no 2-valued non-trivial measure on � . Hence � is real-valued measurable. �

Lemma 168. Let � be measurable or real-valued measurable. Then � is regular.

Proof. Let � be a non-trivial �-additive measure on � . Assume for a contradiction that
cof(�)= 
 <� . Let (�i j i < 
)�� be co�nal in � . For i < 
 be have

�(�i)= �

 [
�<�i

f�g
!
=
X
�<�i

�(f�g) =
X
�<�i

0=0;

using non-triviality and �-additivity. Similarly

�(�)= �

 [
i<


�i

!
6
X
i<


�(�i)=
X
i<


0=0;

contradiction. �

Lemma 169. Let � be a measurable cardinal. Then � is strongly inaccessible.

Proof. Let � be a non-trivial �-additive 2-valued measure on � . Assume for a contradiction
that �<� but 2�>� . We may assume that � is a measure on �2 . De�ne x0:�! 2 by

x0(i)= 1 i� �(fy 2 �2 j y(i)= 1g)= 1:

The �-additivity of � implies

�(�2 n fx0g) = �

 [
i<�

fy 2 �2 j y(i) =1¡x0(i)g
!

6
X
i<�

�(fy 2 �2 j y(i)= 1¡x0(i)g)

=
X
i<�

0

= 0 :

But then �(fx0g) =1 which contradicts the non-triviality of � . �

Thus measurable cardinals are large cardinals. Large cardinals are central notions in set theory.
They can be viewed as �ideal points� in the cardinal hierarchy with respect to certain properties.
A strongly inaccessible cardinal � is an ideal point of cardinal arithmetic. � cannot be reached
by the formation of cardinal powers or even in�nitary sums and products from smaller para-
meters.
One could �cut o�� the universe of sets at � and restrict consideration to V� as a �subuniverse�.
We shall see in later courses that V� is a model of the ZFC-axioms and one could restrict math-
ematics to working inside V� . On the other hand the assumption of inaccessible and stronger
large cardinals like measurable cardinals greatly enriches set theoretic combinatorics. There are
also isolated instances, when the assumption of large cardinals influences the behaviour of
smaller sets like the set of real numbers.

Measurable cardinals 63



21 Normal measures and ultra�lters

We shall now combine techniques from �lters and ideals with measures on measurable cardinals.

Lemma 170. Let � be an uncountable cardinal. Then � is a measurable cardinal i� there is
non-principal, �-complete ultra�lter U on � , i.e., 8i < � fig2/ U (non-principality) and for every
family fXi j i < 
g�U with 
 <� we have \

i<


Xi2U :

Proof. If � is a 2-valued �-additive non-trivial measure � on � then

U = fX �� j �(X) =1g

is an ultrafilter with the desired properties. Conversely, if U~ is a non-principal, �-complete
ultra�lter on � then �~:P(�)! 2 de�ned by

�~(X) =1 i� X 2U~

is a 2-valued �-additive non-trivial measure. �

Let us �x a measurable cardinal � and a non-principal, �-complete ultra�lter U on � .

De�nition 171. De�ne a relation <U on functions f ; g:�! � by

f <U g i� fi < � j f(i)< g(i)g2U:

Recall that we de�ned in some previous arguments

'<S i� f� 2S j '(�)>  (�)g2NS� :

Lemma 172. <U is a strongly wellfounded on �� .

Proof. Assume not and assume that A � �� , A=/ ; does not have a <U-minimal element. Then
de�ne recursively a sequence fn for n < ! : choose f0 2A arbitrary; if fn 2A is de�ned, it is not
<U-minimal in A, and so we can choose (AC) fn+12A such that fn+1<U fn .
For n<! set

Xn= fi < � j fn+1(i)< fn(i)g2U:
Since U is �-complete, \

n<!

Xn2U:

So one can take i02
T
n<!Xn . So for each n<!

fn+1(i0)< fn(i0);

and (fn(i0))n<! is a strictly decreasing !-chain in the ordinals. Contradiction. �

De�nition 173. De�ne the <U-rank kf kU 2Ord of f 2 �� by recursion on <U :

kf kU =
[
fkgkU +1 j g <U f g:

Lemma 174.

a) For �<� and for every f 2 ��

kf kU =� i� fi <� j f(i) =�g2U :

Hence kc�kU =� where c�:�!� is the constant function c�(i)=� .

b) There exists f 2 �� such that kf kU >�
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Proof. a) By induction on �<� . Assume a) holds for � <� . Let f 2 �� .
Assume that kf kU = � but X�= fi < � j f(i) = �g 2/ U . By inductive hypothesis, also X� = fi <
� j f(i) = �g 2/ U for all � < � . Since U is �-complete, any union of less than � many sets which
are not in the ultra�lter is not in the ultra�lter. Thus

fi < � j f(i)6�g=
[
�6�

X� 2/ U

and

fi <� j f(i)>�g2U:
This implies that

c�<U f:

By inductive hypothesis, kc�kU =/ � for all � <� . Hence kc�kU >� . But then

kf kU > kc�kU >� ;
contradiction.
Conversely assume that A= fi < � j f(i) = �g 2U . Then fi < � j f(i) = �g 2/ U for all � <� and
by the inductive hypothesis kf kU =/ � for every � < � . Hence kf kU > � . Assume for a contra-
diction that kf kU > � . Then there exists g 2 �� such that g <U f and kgkU > � . By the
inductive assumption, the set

X�= fi < � j g(i)= �g2/ U

for every � <� . By the �-completeness of U

fi < � j g(i)<�g=
[
�<�

X� 2/ U

and

B= fi < � j g(i)>�g2U:

Since g <U f , the set C = fi <� j g(i)< f(i)g2U . Now take i2A\B \C . Then

�6 g(i)< f(i)=� ;

contradiction.
b) Let d:�!� be the diagonal function d(i)= i . For �<�

fi < � j c�(i)<d(i)g= fi <� j�< ig=
\
�6�

(� n f�g)2U

by the non-principality and �-completeness of U . Hence c� <U d and kdkU > kc�kU = � . Thus
kdkU >� . �

Consider a function f : �! � with kf kU = � . Then a function g: �! � with g <U f has rank
kgkU =�<� , i.e.,

fi < � j g(i)=�g2U:

This resembles Fodor's theorem by which regressive functions are constant on stationary sets.
Indeed one can modify the �lter U to come even closer to Fodor's theorem.
De�ne U~ �P(�) by

X 2U~ i� f¡1(X)= fi <� j f(i)2Xg2U:

(1) U~ is an ultra�lter on � .
Proof . ;2/ U~ since f¡1(;)= ;2/ U .
If X 2 U~ and X � Y � � , then f¡1(X) 2 U and f¡1(X)� f¡1(Y ), and so f¡1(Y ) 2 U and Y 2
U~.
If X;Y 2U~ , then f¡1(X); f¡1(Y )2U and f¡1(X \Y )= f¡1(X)\ f¡1(Y )2U , thus X \ Y 2U~.
If X � � and X 2/ U~, then f¡1(X)2/ U and � n f¡1(X)2U . Hence f¡1(� nX) = � n f¡1(X) 2U
and � nX 2U~. qed(1)
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Note that the argument is based on the preservation of the set theoretic notions ; , � , \ , n by
the f¡1(:)-operation.

(2) U~ is �-complete.
Proof . Let fXi j i < �g � U~ where � < � . Then ff¡1(Xi) j i < �g � U and

T
i<� f

¡1(Xi) 2 U by
the �-completeness of U . Since

f¡1
 \
i<�

Xi

!
=
\
i<�

f¡1(Xi)

we get
T
i<�Xi2U~. qed(2)

(3) U~ is non-principal.
Proof . Let �<� . By Lemma 174(a) fi < � j f(i)=�g2/ U , so

f¡1(f�g)= fi <� j f(i)=�g2/ U
and f�g2/ U~ . qed(3)

De�nition 175. An ultra�lter U on � is normal if every function h: �! � which is regressive
on a set in U, i.e., fi < � j h(i)< ig2U, is constant on a set in U, i.e., there is a � < � such that
fi < � jh(i)= �g2U.

(4) U~ is normal.
Proof . Let h:�!� and fi < � jh(i)<ig2U~. Then

f¡1(fi <� jh(i)< ig)= fj <� jh(f(j))< f(j)g2U

and h � f <U f . Since kf kU = � , kh � f kU = � for some � < � . By Lemma 174(a) this is equi-
valent to

fj <� jh(f(j)) = �g2U :
So

f¡1(fi < � jh(i)= �g)= fj <� jh(f(j))= �g2U
and

fi < � jh(i)= �g2U~:
qed(4)
Hence we have shown

Theorem 176. � is a measurable cardinal i� there is normal non-principal, �-complete ultra-
�lter of � .

Normal ultra�lter have better combinatorial properties like

Lemma 177. Let � be measurable carrying a normal non-principal, �-complete ultra�lter U .
Then

a) C��U where C� is the closed unbounded �lter on � .

b) U is closed unter diagonal intersections, i.e., if fXi j i < �g�U then
i

i<�

Xi2U :

Proof. a) Let C �� be closed unbounded in � but assume that C 2/ U . De�ne h:�!� by

h(i)=max (C \ i):

Then h is regressive on � nC 2U: Since U is normal, take � <� such that

Y = fi < � jh(i)= �g2U:
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Since Y is unbounded in � , max (C \ �) must be equal to � . But this contradicts the unboun-
dedness of C in � .
b) Let fXi j i <�g�U but assume that

a
i<�Xi2/ U . De�ne h:�! � by

h(j) =min fi < j j j 2/Xig if this exists and h(j) =0 else.

Then h is regressive on � n
a
i<�Xi2U: Since U is normal, take � <� such that

Y = fj <� jh(j) = �g2U:
Then

X�\Y \
 
� n

i

i<�

Xi

!
�X�\fj <� j j 2/X�g= ;:

This contradicts the fact that U is an ultra�lter for which the intersection of three elements has
to also lie in the ultra�lter. �

22 Measurable cardinals and the GCH

We use the methods of Silver's theorem in the context of measurable cardinals. Let � be a meas-
urable cardinal and �x a normal non-principal �-complete ultra�lter U on � .

Lemma 178. kdkU =� where d:�! � is the diagonal function d(i)= i .

Proof. kdkU >� was shown in the proof of 174(b).
For the converse consider f <U d . Then

fi < � j f(i)< ig2U

means that f is regressive on a set in U . By the normality of U there is a constant � < � such
that

fi < � j f(i)= �g2U:
By 174(a), kf kU = � . Thus

kdkU =
[
fkf kU +1 j f <U dg6

[
�=�:

�

De�nition 179. Two functions f ; g:�! V are U-almost disjoint if

fi <� j f(i)=/ g(i)g2U:

A family F �� V of functions is U-almost disjoint if f and g are U-almost disjoint for any f ; g 2
F, f =/ g .

Lemma 180. Let F be a U-almost disjoint family where f <U d for every f 2 F. Then
card(F)��.

Proof. By the previous Lemma, f 7! kf kU maps F into � . Moreover, this assignment is
injective: if kf kU = kgkU then

fi < � j f(i) = kf kUg\fi < � j g(i)= kgkUg2U

and since F is a U -almost disjoint family, f = g . Thus card(F)��. �

Lemma 181. Let d+: �! � be the cardinal successor function d+(i) = i+. Let F be a U-almost
disjoint family where f <U d+ for every f 2F. Then card(F)��+.

Proof. Let f 2F . Let
Ff = fg 2Fj g <U f g[ ff g:
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(1) card(Ff)�� .
Proof . For i <� with f(i)< i+ choose an injection hi: f(i)! i . For g 2Ff de�ne g 0:�!V by

g 0(i)=

(
hi(g(i)), if g(i)< f(i)<i+

g(i), else

Then g 7! g 0 is an injective map from Ff into fg 0 j g 2 Ffg. fg 0 j g 2 Ffg is an U -almost disjoint
family where g 0 <U d for every g 2 Ff . By the previous lemma, card(fg 0 j g 2 Ff g) 6 � and so
card(Ff)��. qed(1)
We construct a sequence (f�j � < �) of functions in F by induction such that F =

S
fFf�j � < �g.

Take an arbitrary f02F (wlog. F =/ ; ).
If (f�j � < �) is already de�ned, choose f� 2

S
fFf�j v < �g if possible. If there is no such f�, set

� = � and stop.
(2) � ��+.
Proof . Assume that f�+ is de�ned. If � < �+ then f�+ 2/ Ff� . So f�+ �U f� . By the various
assumptions on F : f� <U f�+ . Thus fv 2 F�+ for all v < � , and card(Ff

�+
) > �+. This contra-

dicts (1). qed(2)
Altogether

card(F) = card(
[
fFf�j � < �g)6

X
�<�

card(Ff�)6
X
�<�

�6� ��+=�+:

�

Theorem 182. Let � be a measurable cardinal and assume that 2�=� for �<� . Then

2�=�+:

Proof. Fix a normal non-principal �-complete ultra�lter U on � .
For i < � choose a map hi: P(i)! � which injects P(i) into i+ for in�nite i . De�ne a map from
P(�) into �� by

X 7!fX=(hi(X \ i)ji < �)2 ��:

If X =/ Y then fX and fY are almost disjoint and hence U -almost disjoint. Also fX <U d+. So by
the previous Lemma

card(P(�))6 card(ffX jX 2P(�g)6�+:
�

23 Partition properties and partition cardinals

De�nition 183. Let X be a term X . For a natural number n<! let

[X ]n= fa�X j card(a)=ng

be the collection of n-element subsets of X . Let

[X ]<!= fa�X j card(a)<!g

be the collection of �nite subsets of X . Let

[X ]!= fa�X j card(a)=!g

be the collection of countable subsets of X .
A function f : [X]n! V or f : [X ]<!!V or f : [X ]n!V is called a partition of [X]n or [X]<! or
[X ]! respectively.

Theorem 184. (Ramsey) Let n < ! and let f : [!]n! 2 . Then there is an in�nite X � ! such
that f � [X]n is constant. The set X is called homogeneous for f.
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Proof. By induction on n . The claim is trivial for n= 0 , and it is an easy instance of an in�n-
itary pidgeon principle in case n = 1. So assume the claim for n and let f : [!]n+1! 2 be given.
We shall �nd an �n + 1-dimensional� homogeneous set for f by taking �n-dimensional� homo-
geneneous sets for �sections� fx of f . For x2! de�ne fx: [! n (x+1)]n! 2 by

fx(s)= f(fxg[ s):

We de�ne sequences x0; x1; ::: , c0; c1; ::: and X0; X1; :::: by simultaneous recursion such that

a) x0<x1< :::<!

b) xi<min (Xi), xi+12Xi
c) c0; c1; :::2f0; 1g

d) ! �X0�X1� ::: are in�nite homogeneous sets for fx0 ; fx1 ; ::: respectively such that 8s2
[Xi]n fxi(s)= ci

Set x0 = 0 . By the inductive assumption take X0 to be an in�nite homogeneous set for fx0 and
take c02f0; 1g such that 8s2 [X0]

n fx0(s) = c0 .
If xi and Xi are de�ned, take xi+1 2 Xi . Then use the inductive assumption and take Xi+1 �
Xi n (xi+1+ 1) to be an in�nite homogeneous set for the function fxi+1 � [Xi n (xi+1+ 1)]n. Take
ci+1 such that 8s2 [Xi+1]n fxi+1(s) = ci+1 .
By the pidgeon principle there is an in�nite set X � fx0; x1; :::g and a c 2 f0; 1g such that 8xi 2
X ci= c .
We show that X is homogeneneous for f with constant value c . Let t 2 [X ]n+1. Let xi=min (t)
and s= t n fxig. Then s2 [Xi]n and

f(t)= fxi(s)= ci= c:

�

Then X is homogeneous for f :
S
n6i<! [�]

i! 2 if for every i2 [n; !) and every x; y 2 [X ]i

f(x)= f(y)

Theorem 185. (Rowbottom's Theorem) Let � be a measurable cardinal with normal measure
U . Let F : [�]<!! 2 . Then there is X 2U such that f � [X ]n is constant for every n2! . The set
X is called homogeneous for F.

Proof. We show by induction on n2! :
(1) There is Xn2U such that f � [Xn]n is constant.
Proof . The case n=0 is trivial. The case n=1 holds because U is a �lter.
n!n+1 . For i <� de�ne Fi: [� n (i+1)]n! 2 by

Fi(a) =F (fig[ a):

By the inductive hypothesis take Xi2U and ci2 2 such that

Fi[[Xi]
n] = fcig:

Take Y 2U and c2 2 such that

8i2Y ci= c:
Let

Xn+1=Y \
i

i<�

Xi2U:

Then Xn+1 is homogeneous for F � [�]n+1 with constant value c . Indeed for fig [ a 2 [Xn+1]n+1

with i <min a we have a2 [Xi]n and

F (fig[ a)=Fi(a)= ci= c:
qed(1)
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Now take X0; X1; :::2U according to (1) and let

X =
\
n<!

Xn:

Then X is homogeneous for F � [�]n for every n2! . �

Theorem 186. Let � be an in�nite cardinal. There is F : [�]!! 2 such that there is no in�nite
homogeneous set for F.

Proof. By the axiom of choice take a wellorder � of [�]!. De�ne

F (a)= 0 i� 8b2 [a]!(a=/ b! a� b):

So F (a) = 0 expresses that a is �-smaller than all its in�nite subsets. Assume that X � � were
an in�nite homogeneneous subset for F . Let a 2 [X ]! be �-minimal in [X ]!. Then F (a) = 0 .
Take an !-sequence

a0( a1( a2( :::( a:
By homogeneity,

F (a0)=F (a1)= ���=F (a)= 0:

This implies

a0� a1� a2� ���;

which contradicts � being a wellorder. �

De�nition 187. For ordinals �; �; � and n2! de�ne

a) �! (�)�
n i� every function f : [�]n! � possesses a homogeneous set X � � of ordertype >

�:

b) �! (�)�
<n i� every function f : [�]<n! � possesses a homogeneous set X � � of order-

type >�:
c) �! (�)�

! i� every function f : [�]<!! � possesses a homogeneous set X � � of ordertype
>�:

With these notations we have shown:

¡ !! (!)2
n ;

¡ if � is a measurable cardinal then �! (�)2
<! ;

¡ �9 (!)2
! .

We de�ne some associated (large) cardinal notions.

De�nition 188. Let � denote an uncountable cardinal.

a) � is weakly compact i� �! (�)2
2 .

b) For � 2 Ord let �(�) be the smallest cardinal � such that �! (�)2
<!, if such a � exists.

�(�) is called the �-th Erdös cardinal.

c) � is a Ramsey cardinal i� �! (�)2
<! .

Theorem 189. Measurable cardinals are Ramsey cardinals. Ramsey cardinals are weakly com-
pact.

Lemma 190. Let � > ! and n < ! . Then � 9 (�)<! i� there is a function g: [�]n6i<! =S
n6i<! [�]

i ! 2 without a homogeneous subset of order type � , i.e., there is no X � � with
otp(X) =� such that for all i2 [n; !) and x; y 2 [X ]i we have g(x)= g(y).

Proof. The implication from right to left is trivial. Conversely take f : [�]<!! 2 which does not
have a homogeneous subset of order � . De�niere g:

S
n6i<! [�]

i! 2 by

g(x)= f(x nx �n);
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where denotes the initial segment of x of order type n . Assume that g has a homogeneous
subset X of order type � . Let Y = X n X � n . Since � is in�nite, otp(Y ) = � . We show for a
contradiction that Y is homogeneneous for f . Let i < ! and x; y 2 [Y ]i. Then by the homogen-
eity of X

f(x)= g(X �n[x)= g(X �n[ y) = f(y): �

Lemma 191. Assume � 9 (�)<! with � in�nite. Then 2� 9 (� + 1)<!. In case � is a limit
ordinal also 2�9 (�)<!.

Proof. Take f : [�]36n<!! 2 without a homogeneous subset of order type � . We then de�ne g:
[�2]26n<!! 2 . Let < well-order �2 . Let � denote the lexicographic ordering of �2 . We want to
ensure that on a homogeneous set � agrees with < or with the converse ordering >. For fx;
yg2 [�2]2 with x< y set

g(fx; yg) =0 i� x� y :

The lexicographic order is de�ned via �rst di�erences. For x; y 2� 2 with x=/ y let


(x; y) =min f�jx(�) =/ y(�)g;

then x� y i� 0=x(
(x; y))< y(
(x; y))= 1 .
Now we de�ne another auxiliary function which will turn a homogeneous set in �2 into a homo-
geneous set in � . Consider fx; y; zg 2 [�2]3 with x � y � z . Since the functions are 2-valued we
cannot have 
(x; y)= 
(y; z).
If 
(x; y)< 
(y; z) then y and z agree up to and including 
(x; y). So the �rst di�erences 
(x;
y) and 
(x; z) agree and


(x; y)= 
(x; z)< 
(y; z):

If 
(y; z)< 
(x; y) then x and y agree up to and including 
(y; z). So the �rst di�erences 
(y;
z) and 
(x; z) agree and


(y; z) = 
(x; z)< 
(x; y)

According to these cases we de�ne for x� y� z

g(fx; y; zg) =
�
0 if 
(x; y)= 
(x; z)< 
(y; z)
1 if 
(y; z)= 
(x; z)< 
(x; y)

So for x � y from a g-homogeneous set, the ordinal 
(x; y) will only depend on the �rst argu-
ment in case g� 1 or, resp., on the second in case g� 0.
So for s2 [�2]46i<! from a g-homogeneous set the set


(s)= f
(x; y)jx; y 2 s; x� yg

will have card(s)¡ 1 many elements.
De�ne g: [�2]46n<!! 2 by

g(s) =

�
f(
(s)) if card(
(s))> 3
0 else

Set � = � + 1 if � is a successor ordinal, and � = � if � is a limit ordinal. We show that g wit-
nesses 2�9 (�)<!.
So assume for a contradiction that X �� 2 has order type � with respect to < and that X is
homogeneous for g .
Case 1 . g[[X ]2] = f0g. This means that < and � agree on X so that X has order type � with
respect to �. If g[[X ]3] = f1g, we have 
(x; y) > 
(x; z) for x � y � z from X . Taking an
increasing !-sequence x0 � x1 �2 ::: from X this yields a contradiction in the form of a des-
cending !-sequence of ordinals:


(x0; x1)> 
(x0; x2)> 
(x0; x3)::::
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Therefore g[[X ]3] = f0g. Then 
(x; y) for x; y 2X; x � y only depends on x and 
(X) = f
(x;
y)j x; y 2X; x� yg �Ord has order type � . We obtain a contradiction by showing that 
(X) is
homogeneous for f : let 36n<! and consider two ascending n-sequences from 
(X):


(x0; y0)< :::< 
(xn¡1; yn¡1) and 
(x00 ; y00)< :::< 
(xn¡1
0 ; yn¡1

0 ):

Then x0�x1� :::�xn¡1� yn¡1 and x00 �x10 � :::�xn¡10 � yn¡10 in X and

f(f
(x0; y0); :::; 
(xn¡1; yn¡1)g) = f(f
(x0; yn¡1); :::; 
(xn¡1; yn¡1)g)
= f(
(fx0; x1; :::; xn¡1; yn¡1g))
= g(fx0; x1; :::; xn¡1; yn¡1g)
= g(fx00 ; x10 ; :::; xn¡10 ; yn¡1

0 g)
= f(
(fx00 ; x10 ; :::; xn¡10 ; yn¡1

0 g))
= f(f
(x00 ; yn¡10 ); :::; 
(xn¡1

0 ; yn¡1
0 )g)

= f(f
(x00 ; y00); :::; 
(xn¡10 ; yn¡1
0 )g):

Case 2 . g[[X ]2] = f1g. This means that < and � agree on X so that X has order type � with
respect to �. If g[[X]3] = f0g, we have 
(x; z) < 
(y; z) for x � y � z from X . Taking a
decreasing !-sequence x0 � x1 �2 ::: from X this yields a contradiction in the form of a des-
cending !-sequence of ordinals:


(x1; x0)> 
(x2; x0)> 
(x3; x0)::::

Therefore g[[X ]3] = f1g. Then 
(x; y) for x; y 2X; x � y only depends on y and 
(X) = f
(x;
y)j x; y 2X; x� yg �Ord has order type � . We obtain a contradiction by showing that 
(X) is
homegeneous for f : let 36n<! and consider two ascending n-sequences from 
(X):


(x0; y0)< :::< 
(xn¡1; yn¡1) and 
(x00 ; y00)< :::< 
(xn¡1
0 ; yn¡1

0 ):

Then x0� y0� :::� yn¡1 and x00 � y00 � :::� yn¡10 in X and

f(f
(x0; y0); :::; 
(xn¡1; yn¡1)g) = f(f
(x0; y0); :::; 
(x0; yn¡1)g)
= f(
(fx0; y0; :::; yn¡1g))
= g(fx0; y0; :::; yn¡1g)
= g(fx00 ; y00; :::; yn¡10 g)
= f(
(fx00 ; y00; :::; yn¡10 g))
= f(f
(x00 ; y00); :::; 
(x00 ; yn¡10 )g)
= f(f
(x00 ; y00); :::; 
(xn¡10 ; yn¡1

0 )g):

for x� y� z

g(fx; y; zg) =
�
0 if 
(x; y)= 
(x; z)< 
(y; z)
1 if 
(y; z)= 
(x; z)< 
(x; y)

�

Lemma 192. If �2Lim then �(�) is regular.

Proof. Assume that �(�) is singular. Take x��(�) co�nal such that

� := otp(x)= cof(�(�))<�(�):

De�ne h:�(�)! � by h(�) = otp(� \ x). Then card(h¡1[f
g])<�(�) for 
 < � .
Choose functions

f : [�]<!! 2 and f
: [h¡1[f
g]]<!! 2

for 
 < � that do not possess homogeneous subsets of ordertype � . De�ne

g: [�(�)]<!! 2
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by

g(f�0; :::; �n¡1g) =

8>>>>>>>>>><>>>>>>>>>>:
0 if n=2 and h(�0)=h(�1)
1 if n=2 and h(�0)<h(�1)
f
(f�2; �3; :::; �n¡1g) if n> 2 and h(�0)= :::=h(�n¡1)= 


f(fh(�2); h(�3); :::; h(�n¡1)g) if n> 2 and h(�1)< :::< h(�n¡1)
0 else

where �0 < �1 < ::: < �n¡1 . Note that the case h(�0) > h(�1) does not occur since h is a never-
decreasing function.
Let H � �(�) be homogeneous for g with otp(H) = � . Let �0 < �1 be the �rst and second ele-
ment of H . Let H 0=H n f�0; �1g.
Case 1 . h(�0) =h(�1). Then h(�0) = h(�) for all � 2H 0. Let 
= h(�0). Then H 0 is homogeneous
for f
 : Let �2; �3; :::; �n¡1 2H 0 with �2< ::: < �n¡1 and �2

0; �3
0; :::; �n¡1

0 2H 0 with �2
0 < ::: < �n¡1

0 .
Then

f
(f�2; �3; :::; �n¡1g)= g(f�0; �1; �2; :::; �n¡1g)= g(f�0; �1; �20; :::; �n¡10 g)= f
(f�20; �30; :::; �n¡10 g):

But H 0 has ordertype � , contradiction to the choice of f
 .
Case 1 . h(�0)<h(�1). Then h �H 0 is orderpreserving and h[H 0] has ordertype � . We get a con-
tradiction by showing that h[H 0] is homogeneneous for f : Let �2; �3; :::; �n¡12H 0 with �2< ::: <
�n¡1 and �20; �30; :::; �n¡10 2H 0 with �20 < :::< �n¡1

0 . Then

f(fh(�2); h(�3); :::; h(�n¡1)g) = g(f�0; �1; �2; :::; �n¡1g)
= g(f�0; �1; �20; :::; �n¡10 g)
= f(fh(�20); h(�30); :::; h(�n¡10 )g):

�

Theorem 193. If �2Lim then �(�) is strongly inaccessible.

Theorem 194. If � >�>! then �(�)>�(�).

Proof. It su�ces to de�ne a map g: [�(�)]16n<!! 2 such that every homogeneous subset for g
has ordertype 6� .
For 
 < �(�) choose f
: [
]<!! 2 which does not have a homogeneous subset of ordertype � .
De�ne g: [�(�)]16n<!! 2 by

g(f�0; :::; �ng) = f�n(f�0; :::; �n¡1g)

where �0< ::: < �n¡1< �n . Assume that H is homogeneous for g of ordertype >� . Let 
 be the
�-th element of H . H \ 
 has ordertype � . We get a contradiction by showing that H \ 
 is
homogeneous for f
 : Let Let �0:::; �n¡1 2 H 0 with �0 < ::: < �n¡1 and �0

0; :::; �n¡1
0 2 H 0 with

�0
0 < :::< �n¡1

0 . Then

f
(f�0:::; �n¡1g)= g(f�0; :::; �n¡1; 
g) = g(f�00; :::; �n¡10 ; 
g)= f
(f�00:::; �n¡10 g): �

Theorem 195. If � is a measurable cardinal with normal measure U . Then the set

f�<�j� is a Ramsey cardinal g2U:

Proof. Otherwise X = f� < �j � is not a Ramsey cardinalg 2 U . We can assume that every � 2
X is an in�nite cardinal. For every � 2X choose a function f�: [�]

<!! 2 which does not have a
homogeneous subset of order type � . De�ne f : [�]<!! 2 by

f(x)=

(
fmax(x)(x nmax (x)) if x=/ ;
0 else

Let Y 2U be homogeneous for f .
(1) f�2 Y j otp(Y \�) =�g2U .
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Proof . Otherwise one can de�ne a regressive function � 7! otp(Y \ �) on a measure one set in U
which contradicts that otp(Y ) =� . qed(1)
So let � 2 Y with otp(Y \ �) = � . It is easy to see that Y \ � is homogeneous for f� : if n < !
and x; y 2 [Y \�]<! then

f�(x)= f(x[f�g) = f(y[f�g)= f�(x):

Contradiction. �

So we obtain the following picture of the large cardinal hierarchy :

the smallest measurable cardinal �
_

the smallest Ramsey cardinal �
_
���
_

�(�)

_ for !6�< � <�

�(�)

_
�(!)

>
the smallest inaccessible cardinal

There are many more questions about this scale of large cardinals, like is �(!) > the smallest
inaccessible cardinal? Where are the weakly compact cardinals?
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