Prof. Dr. Peter Koepke, PD Dr. Philipp Lücke Problem sheet 11

Problem 42 (4 points). Assume that $2^{\lambda} = \lambda^{+}$ holds for every singular cardinal λ with $2^{\operatorname{cof}(\lambda)} < \lambda$ and determine the value of 2^{κ} from the value of $2^{<\kappa}$ for all singular cardinals κ .

Problem 43 (4 points). Let S be a stationary subset of a regular uncountable cardinal κ . A subset C of κ is an S-cub if it is unbounded in κ and $\sup(x) \in C$ holds for every $x \subseteq C$ with $\sup(x) \in S$. Given a sequence $(C_{\alpha} \mid \alpha < \lambda)$ of S-cubs with $\lambda < \kappa$, show that $\bigcap_{\alpha < \lambda} C_{\alpha}$ is an S-cub.

Problem 44 (8 points). Let S be a stationary subset of a regular uncountable cardinal λ . Given an ordinal α , let c_{α}^{λ} denote the constant function with domain λ and range $\{\alpha\}$.

- (1) Prove that $||c_{\alpha}^{\lambda}||_{S} \geq \alpha$ holds for all $\alpha \in \text{Ord.}$
- (2) Determine the value of $||c_{\alpha}^{\lambda}||_{S}$ for all $\alpha < \lambda$.
- (3) Prove that $||c_{\lambda}^{\lambda}||_{S} > \lambda$ (Hint: Use the identity function of λ).
- (4) Prove that there is a proper class of ordinals α with $\|c_{\alpha}^{\lambda}\|_{S} = \alpha$.

Problem 45 (4 points). Let κ be an uncountable regular cardinal and let $\lambda \geq \kappa$ be a cardinal. Define

$$\mathcal{P}_{\kappa}(\lambda) = \{a \subseteq \lambda \mid \operatorname{card}(a) < \kappa\}.$$

A subset C of $\mathcal{P}_{\kappa}(\lambda)$ is closed unbounded in $\mathcal{P}_{\kappa}(\lambda)$ if the following statements hold:

- (a) For all $a \in \mathcal{P}_{\kappa}(\lambda)$, there is $c \in C$ with $a \subseteq c$.
- (b) If $(c_{\alpha} \mid \alpha < \lambda)$ is a sequence of elements of C with $\lambda < \kappa$ and $c_{\alpha} \subseteq c_{\beta}$ for all $\alpha \leq \beta < \lambda$, then $\bigcup_{\alpha < \lambda} c_{\alpha}$ is an element of C.

Moreover, a subset S of $\mathcal{P}_{\kappa}(\lambda)$ is stationary in $\mathcal{P}_{\kappa}(\lambda)$ if $C \cap S \neq \emptyset$ holds for every closed unbounded subset C of $\mathcal{P}_{\kappa}(\lambda)$. Finally, a function $r: D \longrightarrow \lambda$ with $D \subseteq \mathcal{P}_{\kappa}(\lambda)$ is regressive if $r(a) \in a$ holds for all $a \in D$. Prove that, if S is a stationary subset of $\mathcal{P}_{\kappa}(\lambda)$ and $r: S \longrightarrow \lambda$ is regressive, then there is $E \subseteq S$ stationary in $\mathcal{P}_{\kappa}(\lambda)$ with the property that $r \upharpoonright E$ is constant (Hint: Given a sequence $(C_{\gamma} \mid \gamma < \lambda)$) of closed unbounded subsets of $\mathcal{P}_{\kappa}(\lambda)$, consider the set

$$\underset{\gamma < \lambda}{\triangle} C_{\gamma} = \{ a \in \mathcal{P}_{\kappa}(\lambda) \mid a \in \bigcap_{\gamma \in a} C_{\gamma} \}$$

and imitate the proof of Fodor's Lemma).

Please hand in your solutions on Wednesday, January 09 before the lecture (Briefkästen 6 & 7).

- Happy holidays! -