Set Theory - Winter 2018/19

Prof. Dr. Peter Koepke, PD Dr. Philipp Lücke
Problem sheet 11

Problem 42 (4 points). Assume that $2^{\lambda}=\lambda^{+}$holds for every singular cardinal λ with $2^{\operatorname{cof}(\lambda)}<\lambda$ and determine the value of 2^{κ} from the value of $2^{<\kappa}$ for all singular cardinals κ.

Problem 43 (4 points). Let S be a stationary subset of a regular uncountable cardinal κ. A subset C of κ is an S-cub if it is unbounded in κ and $\sup (x) \in C$ holds for every $x \subseteq C$ with $\sup (x) \in S$. Given a sequence $\left(C_{\alpha} \mid \alpha<\lambda\right)$ of S-cubs with $\lambda<\kappa$, show that $\bigcap_{\alpha<\lambda} C_{\alpha}$ is an S-cub.

Problem 44 (8 points). Let S be a stationary subset of a regular uncountable cardinal λ. Given an ordinal α, let c_{α}^{λ} denote the constant function with domain λ and range $\{\alpha\}$.
(1) Prove that $\left\|c_{\alpha}^{\lambda}\right\|_{S} \geq \alpha$ holds for all $\alpha \in$ Ord.
(2) Determine the value of $\left\|c_{\alpha}^{\lambda}\right\|_{S}$ for all $\alpha<\lambda$.
(3) Prove that $\left\|c_{\lambda}^{\lambda}\right\|_{S}>\lambda$ (Hint: Use the identity function of λ).
(4) Prove that there is a proper class of ordinals α with $\left\|c_{\alpha}^{\lambda}\right\|_{S}=\alpha$.

Problem 45 (4 points). Let κ be an uncountable regular cardinal and let $\lambda \geq \kappa$ be a cardinal. Define

$$
\mathcal{P}_{\kappa}(\lambda)=\{a \subseteq \lambda \mid \operatorname{card}(a)<\kappa\} .
$$

A subset C of $\mathcal{P}_{\kappa}(\lambda)$ is closed unbounded in $\mathcal{P}_{\kappa}(\lambda)$ if the following statements hold:
(a) For all $a \in \mathcal{P}_{\kappa}(\lambda)$, there is $c \in C$ with $a \subseteq c$.
(b) If ($c_{\alpha} \mid \alpha<\lambda$) is a sequence of elements of C with $\lambda<\kappa$ and $c_{\alpha} \subseteq c_{\beta}$ for all $\alpha \leq \beta<\lambda$, then $\bigcup_{\alpha<\lambda} c_{\alpha}$ is an element of C.
Moreover, a subset S of $\mathcal{P}_{\kappa}(\lambda)$ is stationary in $\mathcal{P}_{\kappa}(\lambda)$ if $C \cap S \neq \emptyset$ holds for every closed unbounded subset C of $\mathcal{P}_{\kappa}(\lambda)$. Finally, a function $r: D \longrightarrow \lambda$ with $D \subseteq \mathcal{P}_{\kappa}(\lambda)$ is regressive if $r(a) \in a$ holds for all $a \in D$. Prove that, if S is a stationary subset of $\mathcal{P}_{\kappa}(\lambda)$ and $r: S \longrightarrow \lambda$ is regressive, then there is $E \subseteq S$
stationary in $\mathcal{P}_{\kappa}(\lambda)$ with the property that $r \upharpoonright E$ is constant (Hint: Given a sequence $\left.\left(C_{\gamma} \mid \gamma<\lambda\right)\right)$ of closed unbounded subsets of $\mathcal{P}_{\kappa}(\lambda)$, consider the set

$$
\underset{\gamma<\lambda}{\triangle} C_{\gamma}=\left\{a \in \mathcal{P}_{\kappa}(\lambda) \mid a \in \bigcap_{\gamma \in a} C_{\gamma}\right\}
$$

and imitate the proof of Fodor's Lemma).

Please hand in your solutions on Wednesday, January 09 before the lecture (Briefkästen $6 \& 7$).

