Prof. Dr. Peter Koepke, PD Dr. Philipp Lücke Problem sheet 10

Problem 38 (4 points). Prove that the following statements are equivalent for all limit ordinals $\lambda \leq \kappa$:

- (1) $\operatorname{cof}(\kappa) = \lambda$.
- (2) λ is the maximal regular cardinal with the property that there exists a cofinal and strictly increasing function $c: \lambda \longrightarrow \kappa$.
- (3) λ is the minimal limit ordinal with the property that there exists a cofinal, strictly increasing and continuous function $c: \lambda \longrightarrow \kappa$.

Problem 39 (6 points). A sequence $(A_{\alpha} \mid \alpha \in \text{Lim} \cap \aleph_1)$ is a *ladder system* if A_{α} is a cofinal subset of α of order-type ω for every countable limit ordinal α . Derive the following statements from the axioms of ZF :

(1) If there exists a ladder system, then there exists a sequence

$$(s_{\alpha}:\omega\longrightarrow\alpha\mid\omega\leq\alpha<\aleph_1)$$

of surjections (Hint: Construct the sequence with the help of the Recursion Theorem).

(2) If every countable set has a choice function und there exists a ladder system, then there exists a stationary subset B of ℵ₁ with the property that ℵ₁ \ B is also stationary in ℵ₁ (Hint: Use ideas from the proof of Theorem 148).

Problem 40 (6 points). Let $\omega < \lambda = cof(\kappa) < \kappa \in Card$ with $\mu^{\lambda} < \kappa$ for all $\mu < \kappa$ and let $(\kappa_{\alpha} < \kappa \mid \alpha < \lambda)$ be a sequence that is cofinal in κ and continuous. Prove the following statements:

- (1) If $\mathcal{F} \subseteq \prod_{\alpha < \lambda} A_{\alpha}$ is almost disjoint with $\operatorname{card}(A_{\alpha}) \leq \kappa_{\alpha}^{++}$ for all $\alpha < \lambda$, then $\operatorname{card}(\mathcal{F}) \leq \kappa^{++}$.
- (2) If $2^{\mu} = \mu^{++}$ for all $\mu \in \kappa \cap \text{Card}$, then $2^{\kappa} \leq \kappa^{++}$.

(Hint: Use the methods of the proof of Silvers Theorem)

Problem 41 (4 points). A linear order (L, \triangleleft) is \aleph_1 -like if

$$\operatorname{card}(\{a \in L \mid a \triangleleft b\}) < \aleph_1$$

holds for all $b \in L$. Prove the following statements:

- (1) If (L, \triangleleft) is an \aleph_1 -like linear order, then $\operatorname{card}(L) \leq \aleph_1$.
- (2) There is an \aleph_1 -like linear order that is dense and uncountable.

Please hand in your solutions on Wednesday, December 19 before the lecture (Briefkästen 6 & 7).