Prof. Dr. Peter Koepke, PD Dr. Philipp Lücke Problem sheet 9

Problem 33 (4 points). Prove Lemma 133 from the lecture course: if $\kappa \in \text{Card}$ with $\operatorname{cof}(\kappa) > \omega$ and $(C_i \mid i < \gamma)$ is a sequence of closed unbounded subsets of κ with $\gamma < \operatorname{cof}(\kappa)$, then $\bigcap_{i < \gamma} C_i$ is closed unbounded in κ .

Problem 34 (6 points). Let κ be an uncountable regular cardinal. For every function $f : \kappa \longrightarrow \kappa$, the set of *closure points of* f is defined as

$$C_f = \{ \alpha < \kappa \mid \alpha > 0, \ f[\alpha] \subseteq \alpha \}.$$

Prove the following statements:

- (1) For every function $f: \kappa \longrightarrow \kappa$, the set C_f is closed unbounded in κ .
- (2) If C is a closed unbounded subset of κ , then there exists a function $f: \kappa \longrightarrow \kappa$ with $C_f \subseteq C$.
- (3) If $f : \kappa \longrightarrow \kappa$ is strictly increasing and continuous (i.e. $f(\lambda) = \bigcup_{\alpha < \lambda} f(\alpha)$ holds for every limit ordinal $\lambda < \kappa$), then the set

 $Fix(f) = \{\alpha < \kappa \mid f(\alpha) = \alpha\}$

of fixed points of f is closed unbounded in κ .

Problem 35 (4 points). Let κ be an uncountable regular cardinal. Prove that the following statements are equivalent for every subset X of κ :

- (1) X is stationary in κ .
- (2) For every regressive function $f: S \longrightarrow \kappa$, there is an $\alpha < \kappa$ with the property that the set $f^{-1}[\{\alpha\}]$ is stationary in κ .

Problem 36 (6 points). Remember that, given $\beta \in \text{Ord}$, we let ${}^{\beta}2$ denote the set of all functions from β to 2. Moreover, we write ${}^{<\beta}2 = \bigcup_{\alpha < \beta} {}^{\alpha}2$. Finally, if T is a subset of ${}^{<\beta}2$, then we define

$$[T]_{\beta} = \{ f \in {}^{\beta}2 \mid \forall \alpha < \beta \ f \upharpoonright \alpha \in T \}.$$

Given infinite cardinals $\nu < \kappa$ with κ regular and $\nu^+ < \kappa$, prove that $[T]_{\kappa} \neq \emptyset$ holds for all $T \subseteq {}^{<\kappa}2$ satisfying the following statements

- (1) If $f \in T$ and $\alpha \in \text{dom}(f)$, then $f \upharpoonright \alpha \in T$.
- (2) If $\alpha < \kappa$, then $0 < \operatorname{card}(T \cap {}^{\alpha}2) \le \nu$.

(Hint: Show that for every $\delta \in E_{\nu^+}^{\kappa}$, there is a $\gamma < \delta$ with the property that $f \upharpoonright \gamma \neq g \upharpoonright \gamma$ holds for all $f, g \in T \cap {}^{\delta}2$ with $f \neq g$).

Please hand in your solutions on Wednesday, December 12 before the lecture (Briefkästen 6 & 7).

 $\mathbf{2}$