Prof. Dr. Peter Koepke, PD Dr. Philipp Lücke Problem sheet 8

Problem 29. Prove the following statements:

- (1) (1 point) A regular cardinal is weakly inaccessible if and only if it is an uncountable limit cardinal.
- (2) (1 point) A regular cardinal κ is strongly inaccessible if and only if it is uncountable and $2^{\nu} < \kappa$ holds for all cardinals $\nu < \kappa$.
- (3) (2 points) A regular cardinal κ is strongly inaccessible if and only if $\operatorname{card}(V_{\kappa}) = \kappa > \aleph_0$.

Problem 30 (4 points). Prove that for all $\alpha, \beta \in \text{Lim}$, all $\gamma \in \text{Ord}$ with $\aleph_{\gamma} < \operatorname{cof}(\beta)$ and every sequence $(\alpha_{\xi} \mid \xi < \beta)$ that is strictly increasing and cofinal in α , we have

$$\aleph_{\alpha}^{\aleph_{\gamma}} = \sum_{\xi < \beta} \aleph_{\alpha_{\xi}}^{\aleph_{\gamma}} = \bigcup_{\xi < \beta} \aleph_{\alpha_{\xi}}^{\aleph_{\gamma}}.$$

Problem 31 (6 points). Prove the following statements:

- (1) If $2^{\aleph_1} < \aleph_{\omega}$ and $\mathfrak{I}(\aleph_{\omega}) > \aleph_{\aleph_1}$, then $\mathfrak{I}(\aleph_{\aleph_1}) = \mathfrak{I}(\aleph_{\omega})$.
- (2) If $2^{\aleph_0} \ge \aleph_{\aleph_1}$, then $\beth(\aleph_{\omega}) = 2^{\aleph_0}$ and $\beth(\aleph_{\aleph_1}) = 2^{\aleph_1}$.
- (3) If $2^{\aleph_0} = \aleph_{\omega+1}$ and $2^{\aleph_1} = \aleph_{\omega+2}$, then $\aleph_{\omega}^{\aleph_0} < 2^{\aleph_{\omega}}$. In particular, if $2^{\aleph_0} = \aleph_{\omega+1}$, $2^{\aleph_1} = \aleph_{\omega+2}$ and $2^{\aleph_2} = 2^{\aleph_{\omega}}$, then the \exists -function is not monotone.

Problem 32 (6 points). Prove the following statements:

- (1) Given $m < \omega$, we have $2^{\aleph_0} \leq \aleph_m$ if and only if $\aleph_n^{\aleph_0} = \aleph_n$ holds for all $m \leq n < \omega$.
- (2) For all $\kappa \in Card$, we have $2^{\kappa} = (2^{<\kappa})^{\operatorname{cof}(\kappa)}$.
- (3) If $\kappa \in Card$ with $2^{\nu} < \kappa$ for all cardinals $\nu < \kappa$, then $2^{\kappa} = \kappa^{\operatorname{cof}(\kappa)}$.

Please hand in your solutions on Wednesday, December 05 before the lecture (Briefkästen 6 & 7).