Prof. Dr. Peter Koepke, PD Dr. Philipp Lücke Problem sheet 6

Problem 22 (8 points). The Axiom of Dependent Choice DC is the following statement:

"If R is a binary relation on a set a with dom(R) = a and $x \in a$, then there is a function $f : \omega \longrightarrow a$ with f(0) = x and $f(n) \ R \ f(n+1)$ for all $n < \omega$."

Derive the following statements from the axioms of ZF:

- (1) The Axiom of Choice AC implies DC.
- (2) If DC holds and \triangleleft is a binary relation on a set b, then the following statements are equivalent:
 - (a) The relation \triangleleft is well-founded.
 - (b) There is no function $f: \omega \longrightarrow b$ with $f(n+1) \triangleleft f(n)$ for all $n < \omega$.
- (3) DC implies that every countable set has a choice function.
- (4) If every countable set has a choice function and $f : \omega \longrightarrow \aleph_1$, then there is an $\alpha < \aleph_1$ with $\operatorname{ran}(f) \subseteq \alpha$.

Problem 23. Derive the following statements from the axioms of ZF:

- (1) (2 points) If z is a set and $h : \mathcal{P}(z) \longrightarrow \mathcal{P}(z)$ is a function satisfying $h(u) \subseteq h(v)$ for all $u \subseteq v \subseteq z$, then there is $u \subseteq z$ with h(u) = u (Hint: Consider the set $\{u \subseteq z \mid u \subseteq h(u)\}$).
- (2) (2 points) If $x \preccurlyeq y$ and $y \preccurlyeq x$, then $x \sim y$ (Hint: Given injections $f: x \longrightarrow y$ and $g: y \longrightarrow x$, consider the function

$$h: \mathcal{P}(x) \longrightarrow \mathcal{P}(x); u \mapsto x \setminus g[y \setminus f[u]]$$

and use (1)).

(3) (4 points) For every cardinal κ, there exists a cardinal η with κ ≺ η (Hint: Consider the set {R | R is a well-ordering of a subset of κ} and the class {α ∈ Ord | α ≼ κ}. Then use the Mostowski-collapse and the Replacement scheme).

Problem 24 (4 points). Show that the axioms of ZFC imply the existence of a cardinal κ with $\aleph_{\kappa} = \kappa$.

Please hand in your solutions on Wednesday, November 21 before the lecture (Briefkästen 6 & 7).