Set Theory - Winter 2018/19

Problem 10 (4 points). Prove the following statements:
(1) If $G: V \longrightarrow V$ is a class function, then there is a unique class function $F: V \longrightarrow V$ that satisfies $F(x)=G(F \upharpoonright x)$ for ever set x.
(2) Given a class function G, there is a unique class function F satisfying the following statements:
(a) Either $\operatorname{dom}(F)=$ Ord or $\operatorname{dom}(F) \in$ Ord.
(b) $\operatorname{dom}(F)=\{\alpha \in \operatorname{Ord} \mid F \upharpoonright \alpha \in \operatorname{dom}(G)\}$.
(c) $F(\alpha)=G(F \upharpoonright \alpha)$ for all $\alpha \in \operatorname{dom}(F)$.

Problem 11. Prove the following statements:
(1) (1 point) There is a unique class function $H:$ Ord $\longrightarrow V$ satisfying the following statements:
(a) $H(0)=\emptyset$.
(b) $H(\alpha+1)=\mathcal{P}(H(\alpha))$ for all $\alpha \in$ Ord.
(c) $H(\alpha)=\bigcup\{H(\beta) \mid \beta<\alpha\}$ for all $\alpha \in \operatorname{Lim}$.
(2) (1 point) $V=\bigcup \operatorname{ran}(H)$.
(3) (2 points) Every set of ordinals x has a least upper bound $\operatorname{lub}(x)$ in the class Ord with respect to the natural ordering < of Ord.
(4) (1 points) There is a unique class function $R: V \longrightarrow$ Ord with

$$
R(x)=\operatorname{lub}(\{R(y) \mid y \in x\})
$$

for all $x \in V$ (Hint: Use Problem 10).
(5) (2 points) For every set x, we have $R(x)=\min \{\alpha \in \operatorname{Ord} \mid x \subseteq H(\alpha)\}$.
(6) (1 point) For every set x, the ordinal $R(x)$ is the unique element α of Ord with $x \in H(\alpha+1) \backslash H(\alpha)$.
(7) (1 point) $R(\alpha)=\alpha$ for all $\alpha \in$ Ord.

Problem 12 (3 points). The Collection scheme states that

$$
\forall x \exists y \forall u \in x[\exists v R(u, v) \longrightarrow \exists w \in y R(u, w)]
$$

holds for every binary relation R. Prove that the axioms of ZF imply the Collection scheme (Hint: Use the function H constructed in Problem 11).

Problem 13 (4 points). Fix ordinals α and β.
(1) Let \triangleleft denote the binary relation on the set

$$
\alpha \sqcup \beta=(\alpha \times\{0\}) \cup(\beta \times\{1\})
$$

with

$$
(\gamma, i) \triangleleft(\delta, j) \longleftrightarrow[i<j \vee(i=j \wedge \gamma<\delta)]
$$

for all $(\gamma, i),(\delta, j) \in \alpha \sqcup \beta$. Construct a bijection $b: \alpha+\beta \longrightarrow \alpha \sqcup \beta$ with

$$
\gamma<\delta \longleftrightarrow b(\gamma) \triangleleft b(\delta)
$$

for all $\gamma, \delta<\alpha+\beta$.
(2) Let \downarrow denote the binary relation on $\alpha \times \beta$ with

$$
(\gamma, \mu) \boldsymbol{4}(\delta, \nu) \longleftrightarrow[\mu<\nu \vee(\mu=\nu \wedge \gamma<\delta)]
$$

for all $(\gamma, \mu),(\delta, \nu) \in \alpha \times \beta$. Construct a bijection $b: \alpha \cdot \beta \longrightarrow \alpha \times \beta$ with

$$
\gamma<\delta \longleftrightarrow b(\gamma) \longleftrightarrow b(\delta)
$$

for all $\gamma, \delta<\alpha \cdot \beta$.

Please hand in your solutions on Wednesday, October 31 before the lecture (Briefkästen $6 \& 7$).

