Prof. Dr. Peter Koepke, PD Dr. Philipp Lücke Problem sheet 2

Problem 5 (4 points). Suppose that F and G are functions.

- (1) Show that F = G if and only if dom(F) = dom(G) and F(x) = G(x) holds for all $x \in dom(F)$.
- (2) Show that F is injective if and only if there is a function H with dom(H) = ran(F) and H(F(x)) = x for all $x \in dom(F)$.

Problem 6. Prove the following statements:

- (1) (1 point) The class $\{\{x\} \mid x \in V\}$ of all singletons is a proper class.
- (2) (1 point) A class A is a proper class if and only if the class $\{x \mid x \subseteq A\}$ is a proper class.
- (3) (2 points) Construct a class A with the property that the corresponding class $\{x \in A \mid \forall y \in x \ y \notin A\}$ is a proper class.

Problem 7. Define a binary relation \sim on V by setting

$$x \sim y \iff \exists f \ f : x \leftrightarrow y.$$

- (1) (1 point) Prove that \sim is an equivalence relation on V.
- (2) (2 points) Determine the \sim -equivalence classes of \emptyset and $\{\emptyset\}$.
- (3) (2 points) Show that the collection of all x in V with the property that the \sim -equivalence class of x is a proper class is a class and that this class is proper.

Problem 8.

- (1) (1 point) Show that the power set of a transitive set is transitive.
- (2) (2 points) Determine the class of all ordinals α with the property that $\mathcal{P}(\alpha)$ is an ordinal.
- (3) (1 point) Prove that there are transitive sets that are not ordinals.

Problem 9 (3 points). The Collection scheme states that

 $\forall x \; \exists y \; \forall u \in x \; [\exists v \; R(u, v) \longrightarrow \exists w \in y \; R(u, w)]$

holds for every binary relation R. Prove that the axioms and schemes of ZF without the Replacement scheme, but with the Collection scheme, imply the Replacement scheme.

 $\mathbf{2}$

Please hand in your solutions on Wednesday, October 24 before the lecture (Briefkästen 6 & 7).