Prof. Dr. Peter Koepke, PD Dr. Philipp Lücke Problem sheet 1

Problem 1 (4 points). Prove the following statements:

- (1) $\bigcup V = V.$ (2) $\bigcap V = \emptyset.$ (3) $\bigcup \emptyset = \emptyset.$
- $(4) \quad \bigcap \emptyset = V.$

Problem 2. The ordered pair of sets x and y is defined as

$$(x,y) = \{\{x\}, \{x,y\}\}$$

- (1) (1 point) Prove that (x, y) exists for all sets x and y.
- (2) (2 points) Prove that

$$\forall x \; \forall x' \; \forall y \; \forall y' \; [(x,y) = (x',y') \; \longleftrightarrow \; (x = x \land y = y')].$$

(3) (1 point) Construct an injective class function $P: V \times V \longrightarrow V$ with $F(x, y) \neq (x, y)$ for all sets x and y.

Problem 3. Given sets x and y, we define

$$x_{\Delta}y = x \setminus y \cup y \setminus x.$$

(1) (3 points) Given a nonempty set x, show the structure

$$\mathcal{B}_x = \langle \mathcal{P}(x), \emptyset, x, \Delta, \cap \rangle$$

is a ring.

- (2) (2 point) Let \mathbf{F}_2 denote the field with two elements. Given a nonempty set x, show that the ring \mathcal{B}_x is an \mathbf{F}_2 -algebra.
- (3) (1 point) Determine the class of all nonempty sets x with the property that \mathcal{B}_x is a field.

Problem 4. A class A is *transitive*, if every element of A is a subset of A.

- (1) (1 point) Show that the classes \emptyset and V are transitive.
- (2) (2 bonus points) Show that the Axiom of Foundation implies that a transitive class is either empty or contains the empty set.

- (3) (2 point) Given a class A consisting of transitive sets, show that the classes $\bigcup A$ and $\bigcap A$ are transitive.
- (4) (1 points) Given a transitive class A, show that the class $\bigcup A$ is transitive.
- (5) (2 bonus points) Show that the Axiom of Foundation implies that the class $\bigcap A$ is transitive for every transitive class A.
- (6) (2 points) Show that the class of all transitive sets is not transitive.

Please hand in your solutions on Wednesday, October 17 before the lecture (Briefkästen 6 & 7).