Einführung in die Mathematische Logik

Sommersemester 2018

ÜbungsaufgabenProf. Dr. Peter KoepkeSerie 7Dr. Philipp Lücke

Aufgabe 22 (2 Punkte). Gegeben sie eine Sprache S. Zeigen Sie, dass

$$\vdash (\varphi \land \varphi') \iff Qx_0 \dots Qx_{m-1}Q'x'_0 \dots Q'x'_{n-1} (\psi \land \psi')$$

für alle S-Formeln $\varphi = Qx_0 \dots Qx_{m-1} \ \psi$ und $\varphi' = Q'x'_0 \dots Q'x'_{n-1} \ \psi'$ in pränexer Normalform mit $frei(\psi) \cap frei(\psi') = \emptyset$ gilt.

Aufgabe 23 (3 Punkte). Sei $S=\{+, \cdot\}$ eine Sprache mit zwei zweistelligen Funktionssymbolen. Formen Sie den S-Satz

$$\forall x \ [\forall y \ (x+y=y) \ \longrightarrow \ \neg \exists z \ \forall u \ u \cdot (x \cdot z) = u]$$

in pränexe Normalform und Skolem-Normalform um.

Aufgabe 24 (*Die Russellsche Antinomie*, 3 Punkte). Es bezeichne $S_{\in} = \{\in\}$ die Sprache der Mengenlehre mit einem zweistelligen Relationssymbol \in . Beweisen Sie

$$\vdash \forall x \neg \forall y \ [y \in x \longleftrightarrow y \notin y]$$

mit Hilfe des Satzes von Herbrand.

Aufgabe 25. Gegeben sei eine Sprache S. Wir sagen, dass ein S-Modell $\mathfrak{M} = (M, \ldots)$ ein elementares Submodell eines S-Modells \mathfrak{N} ist, falls \mathfrak{M} ein Submodell von \mathfrak{N} ist und

$$\mathfrak{M}\frac{a_0,\ldots,a_{m-1}}{x_0,\ldots,x_{m-1}}\models\varphi\iff\mathfrak{N}\frac{a_0,\ldots,a_{m-1}}{x_0,\ldots,x_{m-1}}\models\varphi$$

für jede S-Formel φ mit $frei(\varphi) \subseteq \{x_0, \dots, x_{m-1}\}$ und alle $a_0, \dots, a_{m-1} \in M$ gilt. In diesem Fall nennen wir \mathfrak{N} eine elementare Erweiterung von \mathfrak{M} .

Ist $\mathfrak{M}=(M,\ldots)$ ein S-Modell, so bezeichne $S_{\mathfrak{M}}$ die eindeutig bestimmte Sprache, die S um ein Konstantensymbol \dot{a} für jedes $a\in M$ erweitert, und \mathfrak{M}_* bezeichne die eindeutig bestimmte $S_{\mathfrak{M}}$ -Expansion von \mathfrak{M} mit $\mathfrak{M}_*(\dot{a})=a$ für alle $a\in M$. Zuletzt bezeichne $\Delta_{el}(\mathfrak{M})$ die Menge aller $S_{\mathfrak{M}}$ -Sätze, die in \mathfrak{M}_* erfüllt sind.

Beweisen Sie die folgenden Aussagen:

- (1) (2 Punkte) Ein S-Modells \mathfrak{N} ist genau dann zu einer elementaren Erweiterung von \mathfrak{M} isomorph, wenn ein $S_{\mathfrak{M}}$ -Modell \mathfrak{N}_* mit $\mathfrak{N} \subseteq \mathfrak{N}_*$ und $\mathfrak{N}_* \models \Delta_{el}(\mathfrak{M})$ existiert.
- (2) (3 Punkte) Die folgenden Aussagen sind für jede Menge Φ von S-Sätzen äquivalent:
 - (a) Es existiert eine Menge Γ von universellen S-Sätzen mit $\Phi \vdash \Gamma$ und $\Gamma \vdash \Phi$.
 - (b) Ist \mathfrak{N} ein Modell von Φ und \mathfrak{M} eine Substruktur von \mathfrak{N} , so ist \mathfrak{M} ein Modell von Φ .

Gilt eine der beiden äquivalenten Aussagen, so sagen wir, dass Φ universell axiomatisierbar ist. (Hinweis: Betrachten Sie $\Gamma = \{\varphi \text{ universell } | \Phi \vdash \varphi\}$ und $\Delta_{el}(\mathfrak{M}) \cup \Phi$ für jedes Modell \mathfrak{M} von Γ .)

(3) (3 Punkte) Sei Φ eine universell axiomatisierbare Menge von S-Sätzen und $\varphi = \exists x \ \psi$ ein S-Satz mit $\Phi \vdash \varphi$. Wenn S mindestens ein Konstantensymbol enthält, dann existieren konstante S-Terme t_0, \ldots, t_{m-1} mit

$$\Phi \vdash \psi \frac{t_0}{x} \lor \ldots \lor \psi \frac{t_{m-1}}{x}.$$

(Hinweis: Verwenden Sie (2) und Ideen aus dem Beweis des Satzes von Herbrand.)

(4) (2 Punkte) Zeigen Sie, dass es keine Schranke für die natürliche Zahl m in Teilaufgabe (3) gibt, d.h. für jedes $n \in \mathbb{N}$ existiert eine Sprache S_n mit mindestens einem Konstantensymbol, eine universell axiomatisierbare Menge Φ_n von S_n -Sätzen und eine quantorenfreie S_n -Formel ψ_n mit $\Phi_n \vdash \exists x \ \psi_n$ und der Eigenschaft, dass

$$\Phi_n \not\vdash \psi_n \frac{t_0}{x} \lor \ldots \lor \psi_n \frac{t_{n-1}}{x}$$

für alle konstanten S_n -Terme t_0, \ldots, t_{n-1} gilt.