Einführung in die Mathematische Logik Sommersemester 2018

Übungsaufgaben	Prof. Dr. Peter Koepke
Serie 5	Dr. Philipp Lücke

Aufgabe 14 (5 Punkte). Gegeben sei eine abzählbare Sprache S und eine konsistente Menge Φ von S-Formeln mit der Eigenschaft, dass keine Variable der Form $v_{2\cdot n}$ mit $n\in\mathbb{N}$ in Formeln in Φ verwendet wird. Zeigen Sie, dass eine Henkin-Menge $\Psi\subseteq L^S$ mit $\Phi\subseteq\Psi$ existiert.

Aufgabe 15. Beweisen Sie die folgenden Aussagen mit Hilfe des Kompaktheitssatzes.

- (1) (3 Punkte) Gegeben sei eine Sprache S und eine Menge Φ von S-Sätzen, die endliche Modelle besitzt. Dann ist die Klasse aller endlichen S-Strukturen $\mathfrak A$ mit $\mathfrak A \models \Phi$ genau dann axiomatisierbar, wenn es eine natürliche Zahl N gibt, so dass die Trägermenge jeder S-Struktur $\mathfrak A$ mit $\mathfrak A \models \Phi$ höchstens N Elemente enthält.
- (2) (3 Punkte) Es bezeichne S_{Gr} die Sprache der Gruppentheorie. Dann gibt es für jeden S_{Gr} -Satz φ , der in jeder unendlichen Gruppe gilt, eine natürliche Zahl N mit der Eigenschaft, dass φ in jeder Gruppe mit mindestens N Elementen gilt.

Aufgabe 16 (4 Punkte). Gegeben sei eine Sprache S und ein S-Struktur \mathfrak{A} . Es bezeichne $S_{\mathfrak{A}}$ die eindeutig bestimmte Sprache, die S um ein Konstantensymbol \dot{a} für jedes $a \in \mathfrak{A}(\forall)$ erweitert, und \mathfrak{A}_* die eindeutig bestimmte $S_{\mathfrak{A}}$ -Struktur mit $\mathfrak{A} \subseteq \mathfrak{A}_*$ und $\mathfrak{A}_*(\dot{a}) = a$ für alle $a \in \mathfrak{A}(\forall)$. Zudem bezeichne $\Delta_{at}(\mathfrak{A})$ die Menge aller atomaren $S_{\mathfrak{A}}$ -Sätze und Negationen von atomaren $S_{\mathfrak{A}}$ -Sätzen, die in \mathfrak{A}_* erfüllt sind. Zeigen Sie, dass die folgenden Aussagen für jede S-Struktur \mathfrak{B} äquivalent sind:

- (1) Es existiert eine $S_{\mathfrak{A}}$ -Struktur \mathfrak{B}_* mit $\mathfrak{B} \subseteq \mathfrak{B}_*$ und $\mathfrak{B}_* \models \Delta_{at}(\mathfrak{A})$.
- (2) Es existiert eine Einbettung von \mathfrak{A} nach \mathfrak{B} .

Aufgabe 17 (5 Punkte). Zeigen Sie mit Hilfe des Kompaktheitssatzes, des Satzes von Kronecker und von Aufgabe 16, dass jeder Körper ein Teilkörper eines algebraisch abgeschlossenen Körpers ist (Hinweis: Verwenden Sie diese Resultate, um eine aufsteigende Kette $\langle K_n \mid n \in \mathbb{N} \rangle$ von Körpern zu konstruieren, die die Eigenschaft besitzt, dass jedes nicht-konstante Polynom in $K_n[X]$ eine Nullstelle in K_{n+1} besitzt).

Abgabe: Mittwoch, 16. Mai 2018, bis 13:00 Uhr in den Briefkästen.