Prof. Dr. Peter Koepke, Ana Njegomir

Problem sheet 1

Definition. A *tree* is a strict partial order $(\mathbb{T}, <_{\mathbb{T}})$ such that the following hold.

- (1) $(\mathbb{T}, <_{\mathbb{T}})$ has a unique minimal element root (\mathbb{T}) .
- (2) The set $\operatorname{pred}_{\mathbb{T}}(t) = \{s \in \mathbb{T} \mid s <_{\mathbb{T}} t\}$, is well-ordered by $<_{\mathbb{T}}$ for every $t \in \mathbb{T}$.

Definition. Let $(\mathbb{T}, <_{\mathbb{T}})$ be a tree.

- (1) Given $t \in \mathbb{T}$, we define the length of t, $\ln_{\mathbb{T}}(t)$, to be the order-type of $pred_{\mathbb{T}}(t)$.
- (2) Given $\alpha \in \text{Ord}$, we define the α -th level of \mathbb{T} by $\mathbb{T}(\alpha) = \{t \in \mathbb{T} \mid \text{lh}_{\mathbb{T}}(t) = \alpha\}.$
- (3) Define the height of $(\mathbb{T}, <_{\mathbb{T}})$ to be $ht(\mathbb{T}) = \min\{\alpha \in Ord \mid \mathbb{T}(\alpha) = \emptyset\}.$
- (4) A branch through T is a maximal linearly ordered subset of T. The length of a branch b, lh_T(b), is the order-type of it.
- (5) A cofinal branch through \mathbb{T} is a branch b through \mathbb{T} with $h_{\mathbb{T}}(b) = ht(\mathbb{T})$.

Problem 1 (6 points). Let κ be an infinite cardinal. A κ -Aronszajn tree is a tree $(\mathbb{T}, <_{\mathbb{T}})$ with $\operatorname{ht}(\mathbb{T}) = \kappa$, $|\mathbb{T}(\alpha)| < \kappa$ for all $\alpha < \kappa$ and without cofinal branches. We say that κ has the tree property if there are no κ -Aronszajn trees. Prove that the cardinal $\omega = \aleph_0$ has the tree property.

Definition. Let κ be an uncountable regular cardinal and \mathbb{T} be a tree of height κ .

- (1) A function $r : \mathbb{T} \to \mathbb{T}$ is called *regressive* if $r(t) <_{\mathbb{T}} t$ holds for every $t \in \mathbb{T} \setminus \{ \operatorname{root}(\mathbb{T}) \}.$
- (2) The tree \mathbb{T} is called *special* if there is a regressive map $r : \mathbb{T} \to \mathbb{T}$ with the property that $r^{-1}[\{t\}]$ is the union of less than κ -many antichains in \mathbb{T} , for every $t \in \mathbb{T}$. In other words, for every $t \in \mathbb{T}$ there is some $\lambda < \kappa$ and a function $c_t : r^{-1}[\{t\}] \to \lambda$ such that $c_t(s_0) \neq c_t(s_1)$ for all $s_0, s_1 \in \mathbb{T}$ with $r(s_0) = r(s_1) = t$ and $s_0 \leq_{\mathbb{T}} s_1$.

Problem 2 (4 points). Let κ be an uncountable regular cardinal and let \mathbb{T} be a tree of height κ . Show that if \mathbb{T} is special, then \mathbb{T} does not have cofinal branches.

Problem 3 (6 points). Let M be a transitive and countable model of ZFC. Two forcing notions $\mathbb{P} \in M$ and $\mathbb{Q} \in M$ are said to be *forcing equivalent* over M, if every \mathbb{P} -generic extension of M is also a \mathbb{Q} -generic extension of M, and vice versa every \mathbb{Q} -generic extension of M is also a \mathbb{P} -generic extension of M. Let \mathbb{P} be the forcing notion whose conditions are intervals [p, q] of the real line \mathbb{R} with rational endpoints p < q, partially ordered by inclusion.

- (a) Let G be M-generic for \mathbb{P} . Prove that G can be reconstructed from a single real.
- (b) Show that \mathbb{P} is forcing equivalent to Cohen forcing \mathbb{C} .

Please hand in your solutions on Monday, October 16 before the lecture.