Prof. Dr. Peter Koepke, Ana Njegomir Problem sheet 9

Problem 1 (5 points). Let $\mathcal{F} \subseteq [\omega]^{\omega}$ be a family which satisfies the sfip and consider the forcing notion $\mathbb{P}_{\mathcal{F}}$ whose conditions are pairs $p = \langle s_p, E_p \rangle$ such that s_p is a finite subset of ω and E_p is a finite subset of \mathcal{F} , ordered by

 $p \leq q \iff s_p \supseteq s_q \wedge E_p \supseteq E_q \wedge s_p \setminus s_q \subseteq \bigcap E_q.$

If G is M-generic for $\mathbb{P}_{\mathcal{F}}$ then prove that in M[G], \mathcal{F} has a pseudo-intersection.

Problem 2 (4 points). Show that MA implies that $\mathfrak{p} = 2^{\aleph_0}$.

Problem 3 (3 points). Prove that $\mathfrak{b} \leq \operatorname{non}(\mathcal{M})$.

Problem 4 (2 points). Find a forcing notion \mathbb{P} which decides the Continuum Hypothesis in the following way: There are \mathbb{P} -generic filters G and H such that $M[G] \models CH$ and $M[H] \models \neg CH$.

Definition. Suppose that S is an uncountable set and $\kappa > \omega$ is a cardinal. Suppose that $A \subseteq [S]^{<\kappa} = \{X \subseteq S \mid |X| < \kappa\}$.

- (1) A is unbounded if for all $x \in [S]^{<\kappa}$ there is $y \in A$ with $x \subseteq y$.
- (2) A is closed if for all \subseteq -chains $\langle x_{\alpha} \mid \alpha < \gamma \rangle$ of sets in A, i.e. $x_{\alpha} \subseteq x_{\beta}$ for $\alpha < \beta$, with $\gamma < \kappa$, $\bigcup_{\alpha < \gamma} x_{\alpha} \in A$.
- (3) A is stationary if $A \cap C \neq \emptyset$ for every club (closed unbounded) $C \subseteq [S]^{<\kappa}$.
- (4) A is directed if for all $x, y \in A$ there is $z \in A$ such that $x \cup y \subseteq z$.

Problem 5 (6 points). If $f: [S]^{<\omega} \to [S]^{<\kappa}$ then we define

 $C_f = \{x \in [S]^{<\kappa} \mid \forall e \in [x]^{<\omega} (f(e) \subseteq x)\}$

the set of closure points of f.

- (a) Suppose that $C \subseteq [S]^{<\kappa}$ is closed and $A \subseteq C$ is directed with $|A| < \kappa$. Show that $\bigcup A \in C$.
- (b) Show that for every club subset of $[S]^{<\kappa}$ there is $f: [S]^{<\omega} \to [S]^{<\kappa}$ such that $C_f \subseteq C$.
- (c) Show that for every function $f: [S]^{<\omega} \to [S]^{<\kappa}, C_f$ is club in $[S]^{<\kappa}$.

Please hand in your solutions on Monday, December 11 before the lecture.