Prof. Dr. Peter Koepke, Ana Njegomir Problem sheet 8

Problem 1 (2 points). Let T be a Suslin tree and \mathbb{P}_T be the corresponding forcing notion. Show that $\mathbb{P}_T \times \mathbb{P}_T$ is not ccc.

Definition. For $x, y \subseteq \omega$ we say that x is almost contained in y, denoted $x \subseteq^* y$, if $x \setminus y$ is finite. A pseudo-intersection of a family $\mathcal{F} \subseteq [\omega]^{\omega}$ is an element $x \in [\omega]^{\omega}$ such that for every $y \in \mathcal{F}$, $x \subseteq^* y$. Furthermore, we say that $\mathcal{F} \subseteq [\omega]^{\omega}$ has the strong finite intersection property (sfip), if every finite subfamily of \mathcal{F} has infinite intersection.

The pseudo-intersection number \mathfrak{p} is defined as the least cardinality of a family $\mathcal{F} \subseteq [\omega]^{\omega}$ which has the sfip but does not have a pseudo-intersection.

Problem 2 (2 points). Prove that $\aleph_1 \leq \mathfrak{p}$.

Problem 3 (5 points). Let $\mathcal{F}, \mathcal{G} \subseteq [\omega]^{\omega}$ be nonempty families of size $\langle \mathfrak{p} \rangle$ such that for all $y \in \mathcal{G}, \{x \cap y \mid x \in \mathcal{F}\}$ has the sfip.

- (a) Let $\mathcal{F}^* = \{\bar{x} \mid x \in \mathcal{F}\} \cup \{\tilde{y} \mid y \in \mathcal{G}\} \cup \{z_n \mid n \in \omega\}$, where for $x \in \mathcal{F}, y \in \mathcal{G}$ and $n \in \omega, \ \bar{x} = \{s \in [\omega]^{<\omega} \mid s \subseteq x\}, \ \tilde{y} = \{s \in [\omega]^{<\omega} \mid s \cap y \neq \emptyset\}$ and $z_n = \{s \in [\omega]^{<\omega} \mid \min s > n\}$. Show that \mathcal{F}^* has the sfip.
- (b) Show that \mathcal{F} has a pseudo-intersection x such that for each $y \in \mathcal{G}$, $x \cap y$ is infinite.

Problem 4 (2 points). Let $\{I_n \mid n \in \omega\}$ be an enumeration of all open intervals in \mathbb{R} with rational endpoints. Suppose that $\{D_\alpha \mid \alpha < \kappa\}$ is a set of dense open subsets of \mathbb{R} . Let $x_\alpha = \{n \in \omega \mid I_n \subseteq D_\alpha\}$ for $\alpha < \kappa$ and $y_k = \{n \in \omega \mid I_n \subseteq I_k\}$ for $k \in \omega$. Show that for each $k \in \omega, \{x_\alpha \cap y_k \mid \alpha < \kappa\}$ has the sfip.

Problem 5 (4 points). Show that $\mathfrak{p} \leq \operatorname{add}(\mathcal{M})$.

Problem 6 (5 points). Let M be a ground model of ZFC+CH, and let $M \vDash \kappa$ is a regular cardinal $> \aleph_1$. Let M[G] be a generic extension of M by the partial order for adjoining κ Cohen reals using finite conditions. Then, in M[G], $\mathfrak{b} = \aleph_1$ and $\mathfrak{d} = 2^{\aleph_0}$.

Please hand in your solutions on Monday, December 4 before the lecture.