Prof. Dr. Peter Koepke, Ana Njegomir Problem sheet 6

Problem 1 (6 points). Let $\langle \langle \mathbb{P}_{\alpha}, \leq_{\alpha}, \mathbb{1}_{\alpha} \rangle \mid \alpha \leq k \rangle$ denote the finite support iteration of the sequence $\langle \langle \dot{\mathbb{Q}}_{\alpha}, \dot{\leq}_{\alpha} \rangle \mid \alpha < k \rangle$. Prove the following statements:

- (a) If k is finite and $\mathbb{1}_n \Vdash_{\mathbb{P}_n}^M$ " $\dot{\mathbb{Q}}_n$ is σ -closed" for all n < k, then \mathbb{P}_{κ} is σ -closed.
- (b) The analogue of (a) for k infinite is false.

Problem 2 (6 points). Let $\langle \langle \mathbb{P}_{\alpha}, \leq_{\alpha}, \mathbb{1}_{\alpha} \rangle \mid \alpha \leq \omega \rangle$ denote the finite support iteration of the sequence $\langle \langle \dot{\mathbb{Q}}_n, \leq_n \rangle \mid n \in \omega \rangle$. Let $\kappa \geq 2$ be a cardinal in M. Suppose that for each $n \in \omega$,

 $\mathbb{1}_n \Vdash_{\mathbb{P}_n}^M ``\dot{\mathbb{Q}}_n$ has an antichain of size κ ".

Show that every \mathbb{P}_{ω} -generic extension M[G] contains a surjective function f: $\omega \to \kappa$ which is not in M.

Problem 3 (5 points). Let $\langle \langle \mathbb{P}_{\alpha}, \leq_{\alpha}, \mathbb{1}_{\alpha} \rangle \mid \alpha \leq \omega \rangle$ denote the finite support iteration of the sequence $\langle \langle \dot{\mathbb{Q}}_n, \leq_n \rangle \mid n \in \omega \rangle$. Prove that if for each $n \in \omega$, $\mathbb{1}_n \Vdash_{\mathbb{P}_n}^M$ " $\dot{\mathbb{Q}}_n$ is atomless" and G is M-generic for \mathbb{P}_{ω} , then M[G] contains a Cohen real over M.

Problem 4 (3 points). Assume that in M we have that κ is a regular cardinal and \mathbb{P} is κ -cc. forcing notion. Suppose that σ is a \mathbb{P} -name such that $\mathbb{1} \Vdash_{\mathbb{P}}^{M} (\sigma \subset \check{\kappa} \land |\sigma| < \check{\kappa})$. Prove that for some $\beta < \kappa$, $\mathbb{1} \Vdash_{\mathbb{P}}^{M} (\sigma \subset \check{\beta})$.

Please hand in your solutions on Monday, November 20 before the lecture.