Prof. Dr. Peter Koepke, Ana Njegomir Problem sheet 5

Definition. A tree \mathbb{T} is a *Suslin tree* if the following holds.

- (1) The height of \mathbb{T} is ω_1 .
- (2) Every branch in \mathbb{T} is at most countable.
- (3) Every antichain in \mathbb{T} is at most countable.

Definition. Let $\alpha \in \text{Ord}$ such that $\alpha \leq \omega_1$. A normal α -tree is a tree \mathbb{T} with the following properties:

- (1) $\operatorname{ht}(\mathbb{T}) = \alpha$,
- (2) each level of \mathbb{T} is at most countable,
- (3) if x is not maximal in \mathbb{T} , then there are infinitely many y > x at the the next level,
- (4) for each $x \in \mathbb{T}$ there is some y > x at each higher level less than α ,
- (5) if $\beta < \alpha$ is a limit ordinal and x, y are both at level β and if $\operatorname{pred}_{\mathbb{T}}(x) = \operatorname{pred}_{\mathbb{T}}(y)$, then x = y.

Definition. Define $\mathbb{P}_{\mathbb{T}}$ to be the collection of all countable normal trees. In other words, $\mathbb{T} \in \mathbb{P}_{\mathbb{T}}$ if and only if for some $\alpha < \omega_1$,

- (1) each $t \in \mathbb{T}$ is a function $t : \beta \to \omega$ for some $\beta < \alpha$;
- (2) if $t \in \mathbb{T}$ and s is an initial segment of t, then $s \in \mathbb{T}$;
- (3) if $\beta + 1 < \alpha$ and $t : \beta \to \omega$ is in \mathbb{T} , then $t \cap n \in \mathbb{T}$ for all $n \in \omega$.
- (4) if $\beta < \alpha$ and $t : \beta \to \omega$ is in \mathbb{T} , then for every γ such that $\beta \leq \gamma < \alpha$ there exists an $s : \gamma \to \omega$ in \mathbb{T} such that $t \subset s$.
- (5) $\mathbb{T} \cap \omega^{\beta}$ is at most countable for all $\beta < \alpha$

 \mathbb{T}_1 is stronger than \mathbb{T}_2 if \mathbb{T}_1 is an extension of \mathbb{T}_2 . In other words $\mathbb{T}_1 < \mathbb{T}_2$ if and only if there exists $\alpha < \operatorname{ht}(\mathbb{T}_1)$ such that $\mathbb{T}_2 = \{t \upharpoonright \alpha \mid t \in \mathbb{T}_1\}$.

Problem 1 (2 points). A set $S \subset \mathbb{T}$ is *bounded* in a tree \mathbb{T} if there is some $\alpha < \operatorname{ht}(\mathbb{T})$ such that all elements of S are at levels $\leq \alpha$. If A is a maximal antichain in a normal tree \mathbb{T} and if A is bounded in \mathbb{T} , then A is maximal in every extension of \mathbb{T} .

Problem 2 (2 points). Let α be a countable limit ordinal. Suppose that $\mathbb{T} \in \mathbb{P}_{\mathbb{T}}$ is a normal α -tree and let A be a maximal antichain in \mathbb{T} . Prove that there is an extension $T^* \in \mathbb{P}_{\mathbb{T}}$ of \mathbb{T} of height $\alpha + 1$ such that A is a maximal antichain in T^* .

Problem 3 (6 points). Let G be a $\mathbb{P}_{\mathbb{T}}$ -generic over M. Prove that in M[G] there is a Suslin tree.

Hint: First show that $S = \bigcup G$ is a normal ω_1 -tree. Then show that S has no uncountable antichain: Pick a name \dot{A} for some maximal antichain A in S. Let $\mathbb{T} \in G$ forces that \dot{A} is a maximal antichain in S. Complete the proof by showing that the set all $\mathbb{T}' \leq \mathbb{T}$ such that there is a bounded maximal antichain $A' \in \mathbb{T}'$ with $\mathbb{T}' \Vdash \dot{A}' \subset \dot{A}$, where \dot{A}' is a name for A', is dense below \mathbb{T} . Problems 1 and 2 will be useful for this.

Problem 4 (6 points). Prove that if there exists a Suslin tree then there exists a normal Suslin tree.

Problem 5 (4 points). Let $M \prec N$ be models of ZFC which have the same cardinals. Suppose that $\mathbb{P} \in M$ is a partial order. Prove that antichains in \mathbb{P} , maximal antichains in \mathbb{P} , dense subsets of \mathbb{P} , \mathbb{P} having ccc and being a \mathcal{D} -generic filter on \mathbb{P} , where \mathcal{D} is some collection of dense sets, is absolute between those two models.

Please hand in your solutions on Monday, November 13 before the lecture.