Prof. Dr. Peter Koepke, Ana Njegomir Problem sheet 13

Definition. A *Ramsey ultrafilter* is an ultrafilter $\mathcal{U} \subseteq [\omega]^{\omega}$ which contains all co-finite subsets of ω and such that for every *colouring* $\pi : [\omega]^2 \to 2$ there is $x \in \mathcal{U}$ such that $\pi \upharpoonright [x]^2$ is constant.

Problem 1 (5 points). Let \mathbb{U} denote the forcing $\langle [\omega]^{\omega}, \subseteq^*, \omega \rangle$ and let $\pi : [\omega]^2 \to 2$. Prove that $D_{\pi} = \{x \in [\omega]^{\omega} \mid \pi \upharpoonright [x]^2 \text{ is constant}\}$ is dense in \mathbb{U} .

Problem 2 (5 points). Let \mathbb{U} denote the forcing $\langle [\omega]^{\omega}, \subseteq^*, \omega \rangle$. Show that if G is *M*-generic for \mathbb{U} , then G is a Ramsey ultrafilter.

Problem 3 (5 points). If $\mathfrak{p} = \mathfrak{c}$, then there exists a Ramsey ultrafilter.

Problem 4 (5 points). Let \mathbb{P} be a forcing notion. Show that if \mathbb{P} preserves cofinalities, then it preserves cardinalities.

Please hand in your solutions on Monday, January 22 before the lecture.