Models of Set Theory II - Winter 2017/2018

Prof. Dr. Peter Koepke, Ana Njegomir	Problem sheet 12
--------------------------------------	------------------

Problem 1 (6 points). Let \mathbb{P} be a forcing notion. Prove that if \mathbb{P} satisfies Axiom A, then it is proper.

Problem 2 (6 points). The Proper Forcing Axiom (PFA) states that for every proper forcing \mathbb{P} , $\operatorname{FA}_{\aleph_1}(\mathbb{P})$ holds. Its consistency proof uses strong large cardinal assumptions. Show that if we replace \aleph_1 by \aleph_2 above, the statement becomes false.

Hint: Consider a forcing which collapses \aleph_2 *to* \aleph_1 *.*

Problem 3 (6 points). Let \mathbb{P} be a forcing notion such that every uncountable subset of \mathbb{P} contains an uncountable pairwise compatible set. Suppose that \mathbb{T} is an \aleph_1 -tree. Show that forcing with \mathbb{P} adds no new uncountable branches through \mathbb{T} .

Problem 4 (4 points). Let \mathbb{U} denote the forcing $\langle [\omega]^{\omega}, \subseteq^*, \omega \rangle$. Prove that \mathbb{U} is σ -closed.

Please hand in your solutions on Monday, January 15 before the lecture.