Prof. Dr. Peter Koepke, Ana Njegomir Problem sheet 11

Problem 1 (5 points). Suppose that for every uncountable cardinal κ every stationary subset of $[\kappa]^{\omega}$ remains stationary in every \mathbb{P} -generic extension of M. Let G be an M-generic filter for \mathbb{P} .

- (a) Show that for every countable set $X \in M[G]$ of ordinals there is a set $Y \in M$ such that Y is countable in M and $X \subseteq Y$.
- (b) Conclude that \mathbb{P} preserves \aleph_1 .

Definition. A forcing notion (\mathbb{P}, \leq) satisfies Axiom A if there is a collection of $(\leq_n)_{n\in\omega}$ of partial orderings of \mathbb{P} such that $p\leq_0 q$ implies $p\leq q$ and for every $n\in\omega, p\leq_{n+1} q$ implies $p\leq_n q$, and

- (1) if $\langle p_n \mid n \in \omega \rangle$ is a sequence such that $p_0 \ge_0 p_1 \ge_1 \dots \ge_{n-1} p_n \ge_n \dots$ then there is a q such that $q \le_n p_n$ for all n;
- (2) for every $p \in \mathbb{P}$, for every n and for every name $\dot{\alpha}$ for an ordinal there exist a $q \leq_n p$ and a countable set B such that $q \Vdash \dot{\alpha} \in \check{B}$

Problem 2 (5 points). Show that every c.c.c. forcing satisfies Axiom A.

Problem 3 (5 points). Prove that every σ -closed forcing satisfies Axiom A.

Problem 4 (5 points). Show that $\mathfrak{b} \leq \operatorname{cof}(\mathfrak{d})$.

Please hand in your solutions on Monday, January 8 before the lecture.

Happy holidays!