Prof. Dr. Peter Koepke, Ana Njegomir Problem sheet 10

Problem 1 (6 Points). Suppose that $\kappa \leq \lambda \leq \mu$ are uncountable regular cardinals. For $Y \subseteq [\mu]^{<\kappa}$, the *projection* of Y to λ is defined as

$$Y_{\lambda} = \{ y \cap \lambda \mid y \in Y \}.$$

For $X \subseteq [\lambda]^{<\kappa}$, the *lifting* of X to μ is defined as

$$X^{\mu} = \{ x \in [\mu]^{<\kappa} \mid x \cap \lambda \in X \}.$$

Prove the following statements:

- (a) If S is stationary in $[\mu]^{<\kappa}$, then S_{λ} is stationary in $[\lambda]^{<\kappa}$.
- (b) If C is club in $[\mu]^{<\kappa}$, then C_{λ} contains a club in $[\lambda]^{<\kappa}$.
- (c) If S is stationary in $[\lambda]^{<\kappa}$, then S^{μ} is stationary in $[\mu]^{<\kappa}$.

Problem 2 (5 points). Suppose that \mathbb{P} is a σ -closed forcing. Let κ be an uncountable cardinal in M and suppose that $p \Vdash_{\mathbb{P}}^{M} ``C \subseteq [\check{\kappa}]^{\check{\omega}}$ is club" for some $p \in \mathbb{P}$ and a \mathbb{P} -name \dot{C} . Prove that there is a club $D \subseteq [\kappa]^{\omega}$ in M such that for all $x \in D$ there are sequences $\langle p_n \mid n \in \omega \rangle$ and $\langle x_n \mid n \in \omega \rangle$ such that for all $n \in \omega, p_{n+1} \leq_{\mathbb{P}} p_n \leq_{\mathbb{P}} p, x_{n+1} \supseteq x_n, p_n \Vdash_{\mathbb{P}}^{M} \check{x}_n \in \dot{C}$ and $\bigcup_{n \in \omega} x_n = x$.

Problem 3 (4 points). Let \mathbb{P} be a σ -closed forcing and let κ be an uncountable cardinal. Prove that every stationary subset of $[\kappa]^{\omega}$ remains stationary in every \mathbb{P} -generic extension of M.

Problem 4 (5 points). Suppose that \mathbb{P} satisfies the countable chain condition and let G be \mathbb{P} -generic over M. Prove that for every uncountable λ , every closed unbounded set $C \subset [\lambda]^{\omega}$ in M[G] has a subset $D \in M$ that is closed unbounded in M.

Please hand in your solutions on Monday, December 18 before the lecture.