PROBLEM SET 11 - MODEL THEORY

Philipp Schlicht and Philipp Lücke Mathematisches Institut, Universität Bonn, Winter 2017-18

Problem 47 (4 points). Let $\langle X, cl \rangle$ be a pregeometry and let $A \subseteq X$. Define

$$cl^A: \mathcal{P}(A) \longrightarrow \mathcal{P}(A); Y \longmapsto A \cap cl(Y)$$

and

$$cl_A: \mathcal{P}(X) \longrightarrow \mathcal{P}(X); \ Z \longmapsto cl(A \cup Z).$$

Prove the following statements:

- (1) $\langle A, cl^A \rangle$ is a pregeometry.
- (2) $\langle X, cl_A \rangle$ is a pregeometry.
- (3) If B_0 is a basis of $\langle A, cl^A \rangle$ and B_1 is a basis of $\langle X, cl_A \rangle$, then $B_0 \cap B_1 = \emptyset$ and $B_0 \cup B_1$ is a basis of $\langle X, cl \rangle$.

Problem 48 (8 points). Prove Lemma 5.6.4.: Let T be an \mathcal{L} -theory, let $\mathcal{M} = \langle M, \ldots \rangle$ be a model of T, let $a_0, \ldots, a_n \in M$ and let \mathcal{L}_* be the first-order language extending \mathcal{L} by constant symbols $\dot{a}_0, \ldots, \dot{a}_n$. Set

$$T_* = T \cup \{\psi(\dot{a}_0, \dots, \dot{a}_n) \mid \psi \in tp^{\mathcal{M}}(a_0, \dots, a_n)\}.$$

Then the following statements hold:

- (1) T_* is complete.
- (2) Given an infinite cardinal κ , the theory T is κ -stable if and only if the theory T_* is κ -stable.
- (3) If $\varphi(v_0, \ldots, v_{n+1})$ is an \mathcal{L} -formula with the property that there is an elementary extension \mathcal{N} of \mathcal{M} such that \mathcal{M}, \mathcal{N} and the $\mathcal{L}_{\mathcal{M}}$ -formula $\varphi(v, \dot{a}_0, \ldots, \dot{a}_n)$ witness that T has a Vaughtian pair, then the canonical \mathcal{L}_* -expansions of \mathcal{M} and \mathcal{N} together with the \mathcal{L}_* -formula $\varphi(v, \dot{a}_0, \ldots, \dot{a}_n)$ witness that T_* has a Vaughtian pair.
- (4) T has a Vaughtian pair if and only if T_* has a Vaughtian pair.

Problem 49 (4 points). Prove Proposition 5.6.6.: Let $\varphi(v)$ be an \mathcal{L} -formula and let \mathcal{M} be an \mathcal{L} -structure such that the following statements hold:

- (1) $\varphi(\mathcal{M}) \neq \emptyset$.
- (2) $\mathcal{M} \models \varphi(\dot{c})$ for every constant symbol \dot{c} in \mathcal{L} .
- (3) $\mathcal{M} \models \forall x_0, \dots, x_n \ [(\varphi(x_0) \land \dots \land \varphi(x_n)) \longrightarrow \varphi(f(x_0, \dots, x_n))]$ for every (n+1)-ary function symbol \dot{f} in \mathcal{L} .

Then there is a unique substructure \mathcal{M}_{φ} of \mathcal{M} with domain $\varphi(\mathcal{M})$ and

$$\mathcal{M}_{\varphi} \models \psi(a_0, \dots, a_{n-1}) \iff \mathcal{M} \models \psi^{\varphi(v)}(a_0, \dots, a_{n-1})$$

holds for every \mathcal{L} -formula $\psi(v_0, \ldots, v_{n-1})$ in which the variable v does not appear and all $a_0, \ldots, a_{n-1} \in \varphi(\mathcal{M})$.

Problem 50 (4 points). Prove Lemma 5.6.7.: Let κ be an infinite cardinal, let $\mathcal{M} = \langle M, \ldots \rangle$ be a κ -saturated \mathcal{L} -structure and let $\varphi(v)$ be an \mathcal{L}_M -formula. If $\varphi(\mathcal{M})$ has cardinality less than κ , then $\varphi(\mathcal{M})$ is finite.

Please submit your solutions in the lecture on January 18.