PROBLEM SET 10 - MODEL THEORY

Philipp Schlicht and Philipp Lücke Mathematisches Institut, Universität Bonn, Winter 2017-18

Problem 41 (4 points). Let κ be an infinite cardinal and let T be a complete theory with infinite models that is κ -stable. Show that for every model \mathcal{M} = $\langle M, \ldots \rangle$ of T with $|M| \geq \kappa$ and every subset A of M with $|A| \leq \kappa$, there is an elementary submodel $\mathcal{M}_0 = \langle M_0, \ldots \rangle$ of \mathcal{M} such that $A \subseteq M_0$ and the sets

- M₀,
 {c^{M₀} | c constant symbol in L},
 {f^{M₀} | f constant symbol in L},
- $\{\dot{P}^{\mathcal{M}_0} \mid \dot{P} \text{ predicate symbol in } \mathcal{L}\}$

all have cardinality at most κ (*Hint: use Problem 38*).

Problem 42 (4 points). Let $\mathcal{M} = \langle M, \ldots \rangle$ be an \mathcal{L} -structure with the property that for some natural number N > 0 and all $A \subseteq M$, the isolated types are dense in $S_N^{\mathcal{M}}(A)$. Show that for all natural numbers n > 0 and all $A \subseteq M$, the isolated types are dense in $S_n^{\mathcal{M}}(A)$.

Given a set X, we let $\mathcal{P}(X)$ denote the *power set* of X, i.e. the set consisting of all subsets of X. A pair $\langle X, cl \rangle$ is a pregeometry if $cl : \mathcal{P}(X) \longrightarrow \mathcal{P}(X)$ is a function and the following statements hold for all $A \subseteq X$ and $a, b \in X$:

- (1) (Reflexivity) $A \subseteq cl(A)$.
- (2) (Finite character) $cl(A) = \bigcup \{ cl(B) \mid B \subseteq A \text{ finite} \}.$
- (3) (Transitivity) cl(cl(A)) = cl(A).
- (4) (Exchange) If $a \in cl(A \cup \{b\}) \setminus cl(A)$, then $b \in cl(A \cup \{a\})$.

Problem 43 (2 points). Let K be a field, let V be a K-vector space and let $cl: \mathcal{P}(V) \longrightarrow \mathcal{P}(V)$ denote the linear closure operation. Show that $\langle V, cl \rangle$ is a pregeometry.

Problem 44 (4 points). Let $\mathcal{M} = \langle M, \ldots \rangle$ be an \mathcal{L} -structure. Show that, if $acl: \mathcal{P}(M) \longrightarrow \mathcal{P}(M)$ denotes the function that sends a subset of M to its algebraic closure (see Definition 3.2.8), then the pair $\langle M, acl \rangle$ satisfies the above properties (1)-(3).

Let $\langle X, cl \rangle$ be a pregeometry.

- (1) A subset $A \subseteq X$ is *independent* if $a \notin cl(A \setminus \{a\})$ holds for all $a \in A$.
- (2) A subset $A \subseteq X$ is a generating set if X = cl(A).
- (3) A subset $A \subseteq X$ is a *basis* if A is an independent generating set.

Problem 45 (4 points). Let $\langle X, cl \rangle$ be a pregeometry. Prove the following statements:

- (1) If $C \subseteq X$ is a generating set and $A \subseteq C$ is independent, then there is a basis B of $\langle X, cl \rangle$ with $A \subseteq B \subseteq C$.
- (2) Two bases of $\langle X, cl \rangle$ have the same cardinality.

The above statements show that for every pregeometry $\langle X, cl \rangle$, there is a unique cardinal dim(X, cl) with the property that every basis of $\langle X, cl \rangle$ has cardinality dim(X, cl).

Problem 46 (2 points). Let K be a field, let V be a K-vector space and let $cl: \mathcal{P}(V) \longrightarrow \mathcal{P}(V)$ denote the linear closure operation. Show that dim(V, cl) is equal to the K-dimension of V.

Happy Holidays!