PROBLEM SET 9 - MODEL THEORY

Philipp Schlicht and Philipp Lücke Mathematisches Institut, Universität Bonn, Winter 2017-18

Problem 38 (5 points). Let κ be an infinite cardinal and let T be a complete theory with infinite models. If T is κ -stable, then there is a set Γ of \mathcal{L} -formulas of cardinality κ with the property that for every \mathcal{L} -formula $\varphi(v_0, \ldots, v_{n-1})$, there is an \mathcal{L} -formula $\psi(v_0, \ldots, v_{n-1})$ in Γ with

$$T \vdash \forall x_0, \dots, x_{n-1} \ [\varphi(x_0, \dots, x_{n-1}) \longleftrightarrow \psi(x_0, \dots, x_{n-1})].$$

Problem 39 (10 points). An \mathcal{L} -theory T has the *order property* if there is an \mathcal{L} -formula $\varphi(v_0, \ldots, v_{2n-1})$, a model $\mathcal{M} = \langle M, \ldots \rangle$ of T and a sequence

$$\langle \langle a_0^i, \dots, a_{n-1}^i \rangle \in M^n \mid i \in \mathbb{N} \rangle$$

such that

$$i < j \iff \mathcal{M} \models \varphi(a_0^i, \dots, a_{n-1}^i, a_0^j, \dots, a_{n-1}^j)$$

holds for all $i, j \in \mathbb{N}$.

(1) If T is a complete theory with the order property and I is an infinite linear order, then there is an \mathcal{L} -formula $\varphi(v_0, \ldots, v_{2n-1})$, a model $\mathcal{M} = \langle M, \ldots \rangle$ of T of cardinality $|I| + |\mathcal{L}|$ and a sequence $\langle \langle a_0^i, \ldots, a_{n-1}^i \rangle \in M^n \mid i \in I \rangle$ such that

$$i <_I j \iff \mathcal{M} \models \varphi(a_0^i, \dots, a_{n-1}^i, a_0^j, \dots, a_{n-1}^j)$$

holds for all $i, j \in I$.

- (2) Show that for every infinite cardinal κ , there is a linear order of cardinality greater than κ that contains a dense subset of cardinality at most κ .
- (3) If T is a complete theory with the order property, then T is not κ -stable for any infinite cardinal κ .

Problem 40 (5 points). Complete the proof of Lemma 5.3.8 that shows that every first-order language has a Skolem theory.

Please submit your solutions in the lecture on December 21.