PROBLEM SET 8 - MODEL THEORY

Philipp Schlicht and Philipp Lücke Mathematisches Institut, Universität Bonn, Winter 2017-18

Problem 33 (4 points). Read the Appendix A in "Katrin Tent & Martin Ziegler – A course in model theory" and the Appendix A in "David Marker – Model Theory: An introduction". Familiarize with the following concepts:

- Well-orderings, ordinals and cardinals.
- The ℵ-function.
- Regular and singular cardinals.
- The Pigeonhole Principle.
- Cardinalities of increasing sequences of sets.

Problem 34 (5 points). Let \mathcal{L}_T denote the first-order language consisting of unary predicate symbols P_s for every finite binary sequence $s \in {}^{<\omega}2$ and let TREE denote the \mathcal{L}_T -theory consisting of the following axioms:

- $\forall x \ P_{\emptyset}(x)$.
- $\exists x \ P_s(x)$ for every $s \in {}^{<\omega}2$.
- $\forall x \ [P_s(x) \leftrightarrow (P_{s^{\frown}\langle 0 \rangle}(x) \lor P_{s^{\frown}\langle 1 \rangle}(x))]$ for every $s \in {}^{<\omega}2$.
- $\neg \exists x \ [P_{s \frown \langle 0 \rangle}(x) \land P_{s \frown \langle 1 \rangle}(x)]$ for every $s \in {}^{\langle \omega 2.}$

Prove the following statements:

- (1) TREE is complete.
- (2) TREE has quantifier elimination.
- (3) TREE is not totally transcendental.

Problem 35 (2 points). Show that the theory of dense linear orders is not ω -stable.

- **Problem 36** (5 points). (1) Prove that $\langle q \mid q \in \mathbb{Q} \rangle$ is a sequence of order indiscernibles for the model $\langle \mathbb{Q}, < \rangle$.
 - (2) Determine all sequences of order indiscernibles for the model ⟨Q, <⟩ that are indexed by the natural numbers.

Problem 37 (4 points). Use the Ramsey Theorem to prove the Finite Ramsey Theorem: Given $k, m, n \in \mathbb{N} \setminus \{0\}$, there exists an $N \in \mathbb{N}$ such that for every set X with at least N-many elements and every function $c : [X]^n \longrightarrow \{0, \ldots, k\}$, there is a c-homogeneous subset of X with at least m-many elements.

Please submit your solutions in the lecture on December 14.