PROBLEM SET 7 - MODEL THEORY

Philipp Schlicht and Philipp Lücke
Mathematisches Institut, Universität Bonn, Winter 2017-18

Problem 26. (5 points) Show that for every countable model $\mathcal{M}=(M, \ldots)$ of $T=$ $\operatorname{Th}(\mathbb{N}, 0,+, \cdot,<)$, there is a countable elementary end extension $\mathcal{N}=(N, \ldots)$ of \mathcal{M}, i.e. $\mathcal{N} \models m<n$ for all $m \in M$ and $n \in N \backslash M$.

To do this, consider the elementary diagram $\operatorname{Diag}_{\text {el }}(\mathcal{M})$ of \mathcal{M}, i.e. the set of $\mathcal{L}_{M^{-}}$ sentences that hold in \mathcal{M}. Let $T=\operatorname{Diag}_{\text {el }}(\mathcal{M}) \cup\{c>m \mid m \in M\}$, where c is a new constant symbol. Then show that the set $\Sigma_{n}(v)=\{v<n \wedge v \neq m \mid m \in M\}$ is not isolated by any $\mathcal{L}_{M} \cup\{c\}$-formula $\theta(v, c)$ for any $n \in N \backslash M$ by proving the following statements.
(a) $\mathcal{M} \models \forall x \exists y>x \exists v<n \theta(v, y)$.
(b) There is some $m<n$ such that $\mathcal{M} \models \forall x \exists y>x \theta(m, y)$.

Hint: the pigeonhole principle holds in $(\mathbb{N}, 0,+, \cdot,<)$.
(c) $\theta(m, c)$ is consistent with T.

Problem 27. (5 points) Let $\mathcal{L}=\left\{<, c_{0}, c_{1}, \ldots\right\}$ and T the \mathcal{L}-theory that consists of the axioms for dense linear orders together with the axioms $\neg \exists x \forall y(x=y \vee x<y)$, $\neg \exists x \forall y(x=y \vee y<x)$ and $c_{i}<c_{j}$ for all $i \neq j$ in \mathbb{N}. Prove the following statements.
(a) T has quantifier elimination and is complete.
(b) T has exactly three countable models up to isomorphism.

Problem 28. (4 points) For the following structures $\mathbb{M}=(M, \ldots)$, determine for any pair of elements $a, b \in M$ if they realize the same or different 1-types. Are there 1-types with respect to $\operatorname{Th}(\mathbb{M})$ that are not realized?
(a) $(\mathbb{Z},+)$
(b) (\mathbb{Z}, \cdot)

Problem 29. (3 points) Decide whether the expansion $(\mathbb{R},<, Q)$ of $(\mathbb{R},<)$ with an additional predicate for the set of rational numbers has a prime model.

Problem 30. (3 points) Show that there is no \aleph_{0}-categorical \mathcal{L}_{R}-theory that contains the axioms for fields.

Problem 31. * (2 extra points) Find a countable theory with exactly two models of size \aleph_{0} up to isomorphism.

Problem 32. * (2 extra points) For each $n \geq 1$, find a countable complete theory T such that there is a unique n-type, but $S_{n+1}(T)$ is uncountable.

Please submit your solutions in the lecture on December 8.

