PROBLEM SET 4 - MODEL THEORY

Philipp Schlicht and Philipp Lücke Mathematisches Institut, Universität Bonn, Winter 2017-18

Problem 15. (3 points) Show that any two \mathcal{L} -structures \mathbb{A} and \mathbb{B} are elementarily equivalent if and only if there are elementary embeddings $f : \mathbb{A} \to \mathbb{C}$ and $g : \mathbb{B} \to \mathbb{C}$ for some \mathcal{L} -structure \mathbb{C} .

Problem 16. (5 points) Show that every injective polynomial map $f : \mathbb{C}^n \to \mathbb{C}^n$ is surjective. *Hint: prove this first for finite fields and then for the algebraic closure* $\overline{\mathbb{F}}_p$ *of* \mathbb{F}_p *for any prime p by working with finite subfields of* $\overline{\mathbb{F}}_p$.

Problem 17. (4 points) Decide which of the following classes is an amalgamation class.

- (a) The class of finite triangle-free graphs.
- (b) The class of finite acyclic graphs (i.e. graphs without cycles).

Problem 18. (5 points) Prove the following statements for any prime p, assuming that \mathbb{F}_{p^n} is a subset of a fixed algebraic closure K of \mathbb{F}_p for all $n \geq 1$.

- (a) \mathbb{F}_{p^m} is a subset of \mathbb{F}_{p^n} if and only if m|n (i.e. m divides n). Hint: use the fact that \mathbb{F}_{p^l} is the set of roots of the polynomial $X^{p^l} X$ for all $l \ge 1$.
- (b) Give a direct proof that the class of finite fields with characteristic p is an amalgamation class.

Problem 19. (3 points) Show that the theory of infinite structures in the empty language L_{\emptyset} has quantifier elimination.

Please submit your solutions in the lecture on November 16.