PROBLEM SET 1 - MODEL THEORY

Philipp Schlicht and Philipp Lücke Mathematisches Institut, Universität Bonn, Winter 2017-18

Problem 1. (4 points) Show that the completeness and compactness theorems follow from the fact that every syntactically consistent set of \mathcal{L} -formulas has a model with an assignment of variables for any language \mathcal{L} .

- (a) (Completeness) If T is a set of \mathcal{L} -formulas and φ is an \mathcal{L} -formula, then $T \vdash \varphi$ if and only if $T \models \varphi$.
- (b) (Compactness) Every finitely satisfiable \mathcal{L} -theory is satisfiable.

Problem 2. (3 points) Suppose that $\mathbb{N} = (N, \dots)$ is an \mathcal{L} -structure, $a_0, \dots, a_{n-1} \in N$ and $M = \{t^{\mathbb{N}}(a_0, \dots, a_{n-1}) \mid t(x_0, \dots, x_{n-1}) \text{ is an } \mathcal{L}\text{-term}\}$. Prove that M is the least subset of N that is the domain of a substructure of \mathbb{N} containing a_0, \ldots, a_{n-1} .

Problem 3. (3 points) Prove that $(\mathbb{Q}, <) \prec (\mathbb{R}, <)$. *Hint: show by induction that for* all formulas $\varphi(x_0, \ldots, x_{n-1})$ in the language $\mathcal{L} = \{<\}$ and all $a_0, \ldots, a_{n-1}, b_0, \ldots, b_{n-1} \in \mathbb{C}$ \mathbb{R} with $(\mathbb{R}, <) \models \bigwedge_{i,j < n} (a_i < a_j \leftrightarrow b_i < b_j)$, we have $(\mathbb{R}, <) \models \varphi(a_0, \ldots, a_{n-1}) \leftrightarrow$ $\varphi(b_0,\ldots,b_{n-1}).$

Problem 4. (4 points)

- (a) Show that any two isomorphic \mathcal{L} -structures \mathbb{M} and \mathbb{N} are elementarily equivalent.
- (b) Show that $(n\mathbb{Z}, +) \equiv (\mathbb{Z}, +)$ for all $n \geq 1$.
- (c) Is $(n\mathbb{Z}, +)$ an elementary substructure of $(\mathbb{Z}, +)$ for n > 1?

Problem 5. (6 points) If X is a set, let $X^{<\omega}$ denote the set of finite sequences with values in X and $[X]^{<\omega}$ the set of finite subsets of X. Assuming that κ is an infinite cardinal, prove the following statements by using the fact that $|X \times Y| = \max\{\lambda, \mu\}$ for all infinite cardinals λ , μ and sets X and Y with $|X| = \lambda$ and $|Y| = \mu$.

- (a) If $\langle X_i \mid i \in I \rangle$ is a sequence with $|X_i| \leq \kappa$ for all $i \in I$ and $|I| \leq \kappa$, then $\begin{aligned} |\bigcup_{i\in I} X_i| &\leq \kappa. \\ \text{(b) If } |X| &= \kappa, \text{ then } |X^{<\omega}| &= \kappa. \end{aligned}$
- (c) If $|X| = \kappa$, then $|[X]^{<\omega}| = \kappa$.

Please submit your solutions in the lecture on October 26.