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Model theory studies classes of structures and their abstract properties, in particular the rela-
tionship between the properties of theories and properties of the classes of their models. A theory
is a set of sentences in a language and all languages are assumed to be first-order. 1

Example. The language LLO is that of (strict) linear orders and LO = {∀x x 6< x, ∀x, y, z (x <
y ∧ y < z → x < z),∀x, y (x < y ∨ x = y ∨ y < x)} is the theory of (strict) linear orders.

If κ is an infinite cardinal, a theory is called κ-categorical if it has exactly one model of size κ
up to isomorphism.

Example. (a) The theory DLO of dense linear orders without end points is ℵ0-categorical, but
not κ-categorical for any uncountable cardinal κ.

(b) The theory of vector spaces over a fixed finite field is κ-categorical for all infinite cardinals
κ.

(c) Then theory ACFp of algebraically closed fields of characteristic p for any prime p or p = 0
is not ℵ0-categeorical, but κ-categorical for every uncountable cardinal κ.

We will study the following problems, among others.

• How can we prove that a theory is κ-categorical?
• For which infinite cardinals can a theory be κ-categorical?

We will see several techniques for the first problem. The second problem is solved by the
following important theorem.

Theorem (Morley). If a theory in a countable language is κ-categorical for some uncountable
cardinal, then it is κ-categorical for every uncountable cardinal.

Date: January 7, 2018.
1These are lecture notes from the course ’Advanced mathematical logic: model theory’ at the University of

Bonn in October and November 2017.

1



2 PHILIPP SCHLICHT

We will further study various related problems, including the following.

• How can we prove that a theory is decidable?
• What can we say about the definable subsets of a model of a given theory?

A theory is called decidable if there is an algorithm that decides for every formula ϕ whether or
not it is provable in the theory. A variant of the second problem is for which theories every definable
subset is already definable by a quantifier-free formula. We will also see various applications to
algebra, for instance Hilbert’s Nullstellensatz.

I mostly follow Chapters 1-4 in the book ’A course in model theory’ by Tent and Ziegler
[TZ12], but in a slightly different order. I also very much recommend the book ’Model theory:
an introduction’ by Marker [Mar02] for further reading. For more information, I recommend the
books ’Model theory’ and ’A shorter model theory’ by Hodges [Hod93, Hod97]. For further reading
in algebra, see for example the book ’Fields and Galois theory’ by Milne.2

I would like to thank Andreas Lietz for proofreading these notes and the participants of the
lecture for asking interesting questions.

1. Basic notions of model theory

We begin by introducing various notions from mathematical logic such as structures, languages,
theories etc.

1.1. Structures, languages and theories.

Definition 1.1.1. A structure is a pair (M, ~R), where ~R is a sequence of elements of M , subsets
of Mn and functions from Mn to M for n ∈ N.

Example 1.1.2. (a) A ring (R, 0, 1,+, ·)
(b) A group (G, ·,−1)
(c) The natural numbers (N, 0, S,+, ·, <)
(d) The field of rationals (Q, 0, 1,+,−, ·)

A language (also known as alphabet or signature) is a set of constant, relation and function
symbols. Each relation and function symbol has a fixed arity in N.

Example 1.1.3. The languages

(a) L∅ = ∅
(b) LAG = {0,+,−} of abelian groups
(c) LR = {0, 1,+,−, ·} of rings and fields
(d) LG = {1, ·,−1} of groups
(e) LLO = {<} of (strict) linear orders
(f) LOF = LR ∪ LLO of ordered fields
(g) LN = {0, S,+, ·, <} of the natural numbers
(h) L∈ = {∈} of set theory

If R is a binary relation symbol, we also write xRy for (x, y) ∈ R.

Definition 1.1.4. If L is a language, an L-structure is a structure (M, 〈RM | R ∈ L〉), where

(a) cM ∈M if c ∈ L is a constant symbol
(b) RM ⊆Mn if R ∈ L is a relation symbol with arity n
(c) fM : Mn →M if f ∈ L is a function symbol with arity n

Definition 1.1.5. Suppose that M = (M, 〈RM | R ∈ L〉) and N = (N, 〈RN | R ∈ L〉) are
L-structures and h : M → N .

(a) h is a homomorphism if for all n and all a0, . . . , an−1 ∈M
(i) h(cM ) = cN for all constant symbols c ∈ L
(ii) If RM (a0, . . . , an−1), then RN (h(a0), . . . , h(an−1)) for all relation symbols R ∈ L of

arity n
(iii) h(fM (a0, . . . , an−1)) = fN (h(a0), . . . , h(an−1)) for all function symbols f ∈ L of arity

n

2See http://www.jmilne.org/math/CourseNotes/FT.pdf
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(b) h is an embedding if it is an injective homomorphism and RM (a0, . . . , an−1) if and only if
RN (h(a0), . . . , h(an−1)) for all relation symbols R ∈ L of arity n.

(c) h is an isomorphism if it is a surjective embedding.
(d) h is an automorphism if it is an isomorphism and M = N .

If there is an isomorphism between L-structuresM andN , we say thatM andN are isomorphic
(M∼= N ).

Definition 1.1.6. Suppose that M = (M, 〈RM | R ∈ L〉) and N = (N, 〈RN | R ∈ L〉) are
L-structures.

(a) M is a substructure of N if M ⊆ N and id: M → N is an embedding from M to N .
(b) N is an extension of M if M is a substructure of N .

Definition 1.1.7. Suppose that K ⊆ L are languages and M = (M, 〈RM | R ∈ L〉) is an
L-structure.

(a) M�K = (M, 〈RM | R ∈ K〉) is called the reduct of M to K.
(b) M is called an expansion of M�K.

Example 1.1.8. (a) M = (R, 0, 1,+, ·, <) is an LOF -structure andM�LR = (R, 0, 1,+, ·) is an
LR-structure.

(b) Suppose thatM = (M, ~R) is an L-structure and A ⊆M . ThenMA := (M, ~R∪ 〈a | a ∈ L〉)
is an LA-structure, where LA = L ∪A.

For any L-structure M, L-formula ϕ(x0, . . . , xn−1), a0, . . . , an−1 ∈ M and any assignment A
of values in M to free variables that occur in ϕ, the validity M |= ϕ(a0, . . . , an−1)[A] is defined
by induction in the usual way.

We fix a sequence of variables 〈vi | i ∈ N〉. The logical symbols are the equality symbol =, the
negation symbol ¬, the conjunction symbols ∧, the disjunction symbol ∨, the existential quantifier
∃, the universal quantifier ∀, brackets (, ) and the true and false statements > and ⊥. We define
L-terms and L-formulas in the usual way by induction from the variables, logical symbols and
symbols of the language. An L-sentence is an L-formula without free variables. Let FormL denote
the set of L-formulas and SentL the set of L-sentences.

A formula is basic if it is atomic or the negation of an atomic formula. A formula is in negation
normal form if it is built up from basic formulas by using ∧, ∨, ∃ and ∀. Two formulas are logically
equivalent if they are equivalent in all models and for all assignments of free variables. A formula
is called universal (existential) if it is logically equivalent to a formula in negation normal form
that doesn’t contain existential (universal) quantifiers.

Definition 1.1.9. The equality axioms are

(a) (reflexivity) ∀x x = x
(b) (symmetry) ∀x, y (x = y → y = x)
(c) (transitivity) ∀x, y, z (x = y ∧ y = z → x = z)
(d) (congruence for relations) ∀x0, . . . , xn−1, y0, . . . , yn−1 ((x0 = y0 ∧ · · · ∧ xn−1 = yn−1) ∧

R(x0, . . . xn−1)→ R(y0, . . . , yn−1))
(e) (congruence for functions) ∀x0, . . . , xn−1, y0, . . . , yn−1 ((x0 = y0 ∧ · · · ∧ xn−1 = yn−1) →

f(x0, . . . , xn−1) = f(y0, . . . , yn−1))

If T is a set of L-sentences and ϕ is an L-formula, we say the T syntactially implies ϕ (T ` ϕ) if
there is a formal derivation of ϕ from T together with the equality axioms in one of the standard
proof calculi.3 Moreover, we say that T implies ϕ (T |= ϕ) if every model M of T with an
assignment of free variables is a model of ϕ.

Definition 1.1.10. Suppose thatM = (M, ~R) and N = (N, ~R) are L-structures and h : M → N .

(a) h is an elementary embedding if for all a0, . . . , an−1 ∈M and all L-formulas ϕ(x0, . . . , xn−1),
we have M � ϕ(a0, . . . , an−1) if and only if N � ϕ(h(a0), . . . , h(an−1)).

(b) M is an elementary substructure of N and N is an elementary extension ofM (M≺ N ) if
M ⊆ N and id: M → N is an elementary embedding from M to N .

3See any textbook on mathematical logic, for instance Martin Ziegler’s book ’Mathematische Logik’ [Zie10].
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(c) M and N are elementarily equivalent (M≡ N ) if for all L-sentences ϕ, we have M |= ϕ if
and only if N |= ϕ.

Example 1.1.11. (a) (Z, <) is a substructure of (Q, <), but not an elementary substructure.
(b) (Q, <) is an elementary substructure of (R, <).

An L-theory is a set of L-sentences.

Example 1.1.12. The theory of groups is the set of axioms ∀x, y, z (x · y) · z = x · (y · z),
∀x(x · 1 = 1 · x = x) and ∀x(x · x−1 = x−1 · x = 1)

Definition 1.1.13. Suppose that T is a set of L-sentences.

(a) T is syntactically consistent if there is no formal proof of a contradiction from T .
(b) T is deductively closed if ψ ∈ T for all ϕ0, . . . , ϕn−1 ∈ T and ψ ∈ FormL with {ϕ0, . . . , ϕn−1} `

ψ.
(c) T is satisfiable or consistent if there is a model M of T .
(d) T is finitely satisfiable if every finite subset of T is satisfiable.
(e) If T is a theory, it is complete if it is consistent and for every L-sentence ϕ, either T |= ϕ or

T |= ¬ϕ.

For example, if M is an L-structure then the theory Th(M) = {ϕ ∈ SentL | M |= ϕ} of M is
complete.

Lemma 1.1.14. If T is a consistent deductively closed theory, the following conditions are equiv-
alent.

(a) T is complete.
(b) There is a structure M with Th(M) = T .
(c) All models of T are elementarily equivalent.

Proof. Since T is consistent, there is a modelM of T . Since T is complete, we have Th(M) = T .
Assuming that there is a structure M with theory T , we have that any model of T satisfies the
same sentences as M. Finally, assume that all models of T are elementarily equivalent. To show
that T is complete, we assume towards a contradiction that T 6|= ϕ and T 6|= ¬ϕ. Thus both
theories T ∪ {ϕ} and T ∪ {¬ϕ} have model, contradicting the assumption. �

Lemma 1.1.15. Suppose that M = (M, . . . ) is an L-structure and M∗ is the LM -structure
induced by M. Then the elementary extensions of M correspond to the models of Th(M∗) as
follows.

(a) If N = (N, . . . ) is an L-structure that is an elementary extension of M, then it is also a
model of Th(M∗) with the canonical interpretation of the new constants.

(b) If N = (N, . . . ) is a model of Th(M∗), then its reduct to L has an elementary submodel that
is isomorphic to M.

Proof. To prove the first claim, suppose that ϕ(x0, . . . , xn−1) is an L-formula and a0, . . . , an−1 ∈
M withM |= ϕ(a0, . . . , an−1). Since a0, . . . , an−1 are constants in LM , ϕ(a0, . . . , an−1) ∈ Th(M∗)
and each ai takes the value ai in N , we have that N |= ϕ(a0, . . . , an−1).

For the second claim, the function h : M → N , h(a) = aN is an elementary embedding with
respect to L-formulas and thus the claim follows. �

Definition 1.1.16. Suppose that M = (M, . . . ) is an L-structure and A ⊆ M . We say that
X ⊆Mn is A-definable if there is an L-formula ϕ(x0, . . . , xn, y0, . . . , ym) and a0, . . . , am ∈ A with
X = {(x0, . . . , xn) | ϕ(x0, . . . , xn, a0, . . . , am)}. Moreover X is called definable if it is ∅-definable.

Example 1.1.17. (a) Let (R,+,−, ·, 0, 1) be a ring and f(X) ∈ R[X] is an element of the
polynomial ring R[X] with coefficients that are definable in R. Then {x ∈ R | f(x) = 0} is
definable over (R,+,−, ·, 0, 1).

(b) Let (R,+,−, ·, 0, 1) be the ring of real numbers. Then the standard order of R is defined by
the formula ϕ(x, y) = ∃z (z 6= 0 ∧ x+ z2 = y).

(c) Let (Z,+,−, ·, 0, 1) be the ring of integers. By Lagrange’s four-square theorem,4 every natural
number is the sum of 4 squares of integers. Hence the standard order of the integers is defined
by the formula ϕ(x, y) = ∃z0, . . . , z3 (x+ z2

0 + · · ·+ z2
3 = y).

4You can find a proof sketch of this theorem in the article ’Lagrange’s four-square theorem’ on Wikipedia.

https://en.wikipedia.org/wiki/Lagrange%27s_four-square_theorem
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Example 1.1.18. The computably enumerable sets of natural numbers are the same as the
subsets of the structure (N, 0,+, ·, <) that are definable by a formula of the form ∃yϕ(x, y), where
ϕ is a formula with only bounded quantifiers of the form ∀m < n and ∃m < n. This follows from
standard results in mathematical logic.

Remark 1.1.19. The theory of (N,+, ·) is undecidable. To see this, assume that there is an
algorithm that decides for every sentence ϕ whether ϕ of ¬ϕ holds. By standard results in
mathematical logic, there is a formula ϕ(x, y) that defines the halting problem in (N,+, ·), i.e. we
have (N,+, ·) |= ϕ(m,n) if and only if the Turing machine coded by m halts when given the input
n. However, it is easy to see that the halting problem is not decidable and moreover it is definable
in this structure.

Given any set S, we now define S-sorted languages L, S-sorted structures and S-sorted L-
structures as follows. We will call the elements of S sorts.

Definition 1.1.20. (a) An S-sorted language is a language L where each constant symbol has
a sort s ∈ S, each n-ary relation symbol has a type (s0, . . . , sn−1) ∈ Sn and each n-ary
function symbol has a type (s0, . . . , sn−1, s) ∈ Sn+1.

(b) An S-sorted structure is a pair ( ~M, ~R), where ~M = 〈Ms | s ∈ S〉 and each element of ~R is
either an element of Ms, a subset of Ms0 ×· · ·×Msn−1

or a function from Ms0 ×· · ·×Msn−1

to Ms for some s0, . . . , sn−1, s ∈ S.

(c) Suppose that L is an S-sorted language. An L-structure is an S-sorted structure ( ~M, 〈R ~M |
R ∈ L〉) such that c

~M ∈Ms for each constant symbol c ∈ L of sort s, R
~M ⊆Ms0×· · ·×Msn−1

for each relation symbol R ∈ L of type (s0, . . . , sn−1) and f
~M : Ms0 × · · · ×Msn−1

→Ms for
each function symbol f ∈ L of type (s0, . . . , sn−1, s).

If |S| = n, we also talk about n-sorted languages and structures.

Example 1.1.21. Vector spaces over arbitrary fields can be easily formalized as 2-sorted struc-
tures, where one sort corresponds to fields and the other one to vector spaces.

1.2. Elementary substructures and extensions. The proof of the following theorem can be
found in most textbooks in mathematical logic, and is essentially the same as that of [TZ12,
Theorem 2.2.1].

Theorem 1.2.1. (Gödel) Every syntactically consistent set of L-formulas has a model with an
assignment of free variables.

This easily implies the completeness theorem.

Theorem 1.2.2. (Completeness) Suppose that L is a language, T is a set of L-formulas and ϕ
is an L-formula. Then T ` ϕ if and only if T |= ϕ.

Proof. The first implication holds since all rules of formal proof calculi are correct. To prove the
reverse implication, we can assume that T is syntactically consistent, since otherwise both T |= ϕ
and T ` ϕ hold. We now assume that T |= ϕ but T 6` ϕ. In any proof calculus, T 6` ϕ implies
that T ∪ {¬ϕ} is syntactically consistent. Hence this theory has a model by Theorem 1.2.1, but
this contradicts the assumption. �

We immediately obtain the following result from the completeness theorem.

Theorem 1.2.3. (Compactness) Every finitely satisfiable theory is satisfiable.

The following is one of the basic applications of compactness.

Lemma 1.2.4. If a theory T has arbitrarily large finite models, then T has an infinite model.

Proof. Let ϕn be the sentence ∃x0, . . . , xn
∧
i,j≤n, i 6=j xi 6= xj and let T ∗ = T ∪ {ϕn | n ∈ N}.

Then T ∗ is finitely satisfiable and hence satisfiable by the compactness theorem. Moreover any
model of T ∗ is infinite. �

The following criterion is useful to prove that for a structure M = (M, . . . ), a subset of M is
the domain of an elementary substructure.
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Lemma 1.2.5. (Tarski’s test) If N = (N, ...) is an L-structure and M ⊆ N , the following
conditions are equivalent.

(a) M is the domain of a (unique) elementary substructure of N .
(b) The following holds for all L-formulas ϕ(x, x0, . . . , xn−1) and a0, . . . , an−1 ∈ M . If there is

some b ∈ N with N |= ϕ(b, a0, . . . , an−1), then there is some a ∈M with N |= ϕ(a, a0, . . . , an−1).

Proof. The first implication is clear. Assuming that the second statement holds, it follows that
M is the domain of a (unique) subtructure M of N by applying the statement to the formula
ϕ(x, x0, . . . , xn−1) = (f(x0, . . . , xn−1) = x). We now prove M ≺ N by induction on formulas.
Since the cases for ∧, ∨ and ¬ are clear, we only prove the existential case. To this end, we
first assume that a0, . . . , an−1 ∈ M and M |= ∃xϕ(x, a0, . . . , an−1). We choose some a ∈ M
with M |= ϕ(a, a0, . . . , an−1). By the induction hypothesis, we have N |= ϕ(a0, . . . , an−1). We
now assume that a0, . . . , an−1 ∈ M and N |= ∃xϕ(x, a0, . . . , an−1). By the assumption, there
is some a ∈ M with N |= ∃xϕ(x, a0, . . . , an−1). Thus M |= ϕ(x, a0, . . . , an−1) by the induction
hypothesis. �

To obtain precise sizes of models in the Löwenheim-Skolem theorem below, we will use the
following fact. It is an easy exercise in set theory that is based on the fact that κ · λ = |κ× λ| =
max{κ, λ} for all infinite cardinals κ, λ.

Problem 1.2.6. Suppose that κ is an infinite cardinal and X is a set of size κ.

(a) If 〈Xi | i < α〉 is a sequence of sets of size at most κ and α ≤ κ, then |
⋃
i≤κXi| ≤ κ.

(b) The set X<ω of finite sequences in X has size κ.
(c) The set [X]<ω of finite subsets of X has size κ.

Since any formula is a finite sequence of symbols, it follows that |FormL| = max{|L|, ω} for any
language L.

Definition 1.2.7. Suppose that M = (M, . . . ) is an L-structure.

(a) A Skolem function for an L-formula ϕ(x0, . . . , xn−1) with respect toM is a function fϕ : Mn →
M such that for all a0, . . . , an−1 ∈ M with M |= ∃xϕ(x, a0, . . . , an−1), we have M |=
ϕ(fϕ(a0, . . . , an−1), a0, . . . , an−1).

(b) If fϕ is a Skolem function with respect to M for each ϕ ∈ FormL, then the set F = {fϕ |
ϕ ∈ FormL} is called a set of Skolem functions for M.

(c) Suppose that A ⊆M and F is a set of Skolem functions forM. The Skolem hull of A inM
with respect to F is defined as hF (A) =

⋃
n∈N hn(A), where h0(A) = A and for all n ∈ N ,

hn+1(A) = {fϕ(a0, . . . , am−1) | ϕ(x0, . . . , xm−1) ∈ FormL, a0, . . . , am−1 ∈ hn(A)}.

Theorem 1.2.8. (Löwenheim-Skolem) Let M = (M, . . . ) be an L-structure, A ⊆ M and κ an
infinite cardinal.

(1) If max{|A|, |L|} ≤ κ ≤ |M |, then M has an elementary substructure of size κ that contains
A.

(2) If M is infinite and max{|M |, |L|} ≤ κ, then M has an elementary extension of size κ.

Proof. To prove the first claim, let F be a set of Skolem functions for M and B a set of size κ
with A ⊆ B ⊆M . By applying Tarski’s test, it follows immediately that hF (B) is the domain of
an elementary substructure of M. Moreover |hn(B)| = κ for every n ∈ N and |hF (B)| = κ by
Problem 1.2.6.

The second claim is proved by applying the compactness theorem. We first construct an
elementary extension ofM of size at least κ. To this end, let L′ be the language LM ∪{ci | i ∈ I},
where I is a set of size κ and T the L′-theory Th(M) ∪ {ci 6= cj | i, j ∈ I, i 6= j}. Since M is
infinite, T is finitely satisfiable and hence there is a model N = (N, . . . ) of T by the compactness
theorem. Since |N | ≥ κ, we can apply the first claim to obtain an elementary submodel of N of
size κ whose domain contains M . �

If T is an L-theory, let Mod(T ) denote the class of L-structures that are models of T . We further
call a class C of L-structures axiomatizable or elementary if C = Mod(T ) for some L-theory T .
Moreover C is called finitely axiomatizable if C = Mod(T ) for some finite theory T .
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Lemma 1.2.9. A class C of L-structures is finitely axiomatizable if and only if both C and its
complement are axiomatizable.

Proof. If C = Mod(T ) for some finite theory T = {ϕ0, . . . , ϕn−1}, then in fact C = Mod(ϕ) for
ϕ = ϕ0 ∧ · · · ∧ ϕn−1 and hence the complement of C is axiomatized by ¬ϕ.

Now assume that C is axiomatized by T and its complement by T ′. Since T∪T ′ is not satisfiable,
it is not finitely satisfiable by the compactness theorem. Thus we can find finite subset S and S′

of T and T ′ such that S ∪ S′ is not satisfiable. We now claim that C = Mod(S). Otherwise there
is some M ∈ Mod(S) \Mod(T ) and hence M ∈ Mod(S ∪ T ′). �

Example 1.2.10. The class of connected graphs is not axiomatizable. To see this, we assume
towards a contradiction that it is axiomatized by an L-theory T , where L contains a binary relation
symbol R that is interpreted as the edge relation for graphs. We now expand the language to
L′ = L ∪ {c, d}, where c and d are new constants, and further let T ′ = T ∪ {ϕn | n ∈ N}, where
ϕn = ¬(∃x0, . . . , xn(

∧
i<nR(xi, xi+1)∧ x0 = c∧ xn = d)) for each n ∈ N, i.e. ϕn states that there

is no path of length n from c to d. It is easy to see that T ′ is finitely satisfiable and hence has a
model M by the compactness theorem. Since ϕn holds in M for all n ∈ N, cM and dM are not
connected in M by a finite path, contradicting the assumption.

We will also use Los’ theorem about ultraproducts (see [Jec03, pp. 149-152]). Joshua Chen
asked whether stronger languages can axiomatize more classes of models. In particular, we can
ask whether C can become axiomatizable by adding a single relation symbol, or if the following
holds.

Question 1.2.11. Is there a countable language L and a class C of L-structures that is not
axiomatizable in L, but is equal to the set of reducts of the models of a theory in some countable
language that extends L?

2. Proving categoricity

In this section, we consider several natural theories such as those of dense linear orders, vector
spaces over Q and algebraically closed fields. We will determine for which infinite cardinals κ
these theories are κ-categorical.

2.1. Categoricity of various theories. We will see various examples of ℵ0-categorical and
uncountably categorical theories. The following criterion shows that all such theories are already
complete.

Lemma 2.1.1. (Vaught’s test) Suppose that κ is an infinite cardinal, L is a language with |L| ≤ κ
and T is a consistent theory with no finite models. If T is κ-categorical, then it is complete.

Proof. We show that any two models M and N of T are elementarily equivalent. since M and
N are infinite and |L| ≤ κ, Th(M) and Th(N ) have infinite models M′ and N ′ of size κ by the
Löwenheim-Skolem Theorem. By our assumption, M≡M′ ∼= N ′ ≡ N . �

Example 2.1.2. Our first example is the language L = {E}, where E is a binary relation
symbol, and T is the theory of an equivalence relation with exactly two classes, both of which
are infinite; the axioms are those of equivalence relations together with the axioms ∃x, y¬E(x, y),
∀x, y, z(E(x, y) ∨ E(x, z) ∨ E(y, z) and ϕn = ∀x0, . . . , xn(

∧
i≤nE(x0, xi) → ∃x

∧
i≤n(x 6= xi ∧

E(x, xi))) for all n ∈ N. It is easy to see that any two countable models of T are isomorphic.
However T is not κ-categorical for any uncountable cardinal κ. To see this, let M be a model of
T of size κ where both equivalence classes have size κ and let N be a model of size κ where one
equivalence class has size κ and the other one has ℵ0.

The theory DLO of dense linear orders without end points is defined as the theory of (strict)
linear orders without end points in the language LLO = {<} with the additional axioms ∀x, z(x <
z → ∃y(x < y < z)), ∀y∃x(x < y) and ∀x∃y(x < y). For example (Q, <) and (R, <) are models
of DLO.

Theorem 2.1.3. DLO is ℵ0-categorical.
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Proof. This is a typical example of a back-and-forth construction. Suppose that A = (A,<A)
and B = (B,<B) are countably infinite models of DLO and let 〈an | n ∈ N〉 and 〈bn | n ∈ N〉
enumerate them without repetitions. We construct a sequence of finite sets An, Bn of A, B and
isomorphisms fn : An → Bn, starting with A0 = B0 = f0 = ∅.

For the induction step, assume that An, Bn and fn are already defined. If an ∈ An, let
A′n = An, B′n = Bn and f ′n = fn. If on the other hand an /∈ An, then we let A′n = An ∪ {an}
and choose some b′n ∈ B such that the extension f ′n of fn with f ′n(an) = b′n is an isomorphism
of A′n to B′n = Bn ∪ {b′n}. If bn ∈ B′n, let An+1 = A′n, Bn+1 = B′n and fn+1 = f ′n. If however
bn /∈ B′n, we let Bn+1 = Bn′ ∪ {bn} and choose some a′n ∈ A such that the extension fn+1 of f ′n
with fn+1(a′n) = bn from An+1 = A′n ∪ {a′n} to Bn+1 is an isomorphism.

We finally define f as the union of the functions fn for all n ∈ N. Then f : A→ B is bijective
and it is an isomorphism, since each fn is an isomorphism. �

If A = (A,<A) and B = (B,<B) are linear orders, the lexicographical order <lex of these two
linear orders on A × B is defined by letting (a, b) <lex (a′, b′) if a < a′ or (a = a′ ∧ b < b′). It is
easy to check that this is always a linear order.

Theorem 2.1.4. DLO is not κ-categorical for any uncountable cardinal κ.

Proof. We consider the usual linear order <Q on Q. We first claim that for any linear order
(A, <A), the lexicographical order <lex on A × Q given by <A and <Q is dense. To show this,
assume that (a, q) <lex (b, r). If a <A b, then we can pick any q′ ∈ Q with q <Q q

′ and have that
(a, q) <lex (a, q′) <lex (b, r). If otherwise a = b and q <Q r, then we choose some q′ ∈ Q with
q <Q q′ <Q r and have that (a, q) <lex (a, q′) <lex (b, r). Moreover <lex has no end points, since
there are no end points in <Q.

Two prove the claim, we identify κ with the set (of size κ) of all ordinals α < κ and let
(κ,<) denote the usual linear order. It is in fact a well-order, i.e. a linear order with no infinite
decreasing sequences. We further let <∗ denote the reverse linear order on κ that is defined by
α <∗ β ⇔ β < α. Now let <lex and <∗lex denote the lexicographical orders on κ×Q that are given
by <, <Q and <∗, <Q. Since (κ×Q, <lex) and (κ×Q, <∗lex) are dense linear orders without end
points, it suffices to show that they are not isomorphic.

The first one contains strictly increasing sequences of length κ, for instance 〈(α, 0) | α < κ〉.
Assuming that they are isomorphic, there is such a sequence 〈(αβ , qβ) | β < κ〉 in (κ×Q, <∗lex) as
well. Then the sequence 〈αβ | β < κ〉 is non-increasing by the definition of <∗lex. Since (κ,<) is
a well-order, it contains no infinite decreasing sequences and therefore, there is some β0 < κ such
that αβ = αγ for all β with β0 ≤ β < κ. By the definition of <∗lex, it follows that the sequence
〈qβ | β0 ≤ β < κ〉 is an uncountable strictly decreasing sequence in Q. This contradicts the fact
that Q is countable. �

Suppose that K = (K, 0,+,−, ·) is a field, L = LAG∪{ma | a ∈ K}, where ma is interpreted as
scalar multiplication with a, and T is the L-theory of K-vector spaces. The reason for adding the
function symbols ma is that we want the models to be vector spaces over some fixed field, instead
of having different fields for different models.

Example 2.1.5. The L-theory T of K-vector spaces is κ-categorical for all cardinals κ > |K|,
since any two K-vector spaces are isomorphic if and only if their dimension is equal and for any K-
vector space V of size |V | > |K|, we have |V | = dim(V ). Thus for finite fields, T is κ-categorical for
all infinite cardinals κ and for all countably infinite fields, it is not ℵ0-categorical but κ-categorical
for all uncountable cardinals κ.

The next example is the theory of torsion-free divisible abelian groups. To define these notions,
suppose that (G, 0,+,−) is an abelian group. We write n · x = x+ · · ·+ x (n times) for all x ∈ G
and n ∈ N . The group is called torsion-free if it satisfies the axioms ∀x 6= 0 n ·x 6= 0 for all n ∈ N
and divisible if it satisfies the axioms ∀x∃y x = n · y for all n ∈ N .

Lemma 2.1.6. The theory of torsion-free abelian groups is not ℵ0-categorical, but κ-categorical
for all uncountable cardinals κ.

Proof. We show that every torsion-free abelian group is a Q-vector space and conversely. Assume
first that (G, 0,+,−) is a torsion-free divisible abelian group. Then for any g ∈ G and n > 0,
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there is some h ∈ G with n · h = g. If h′ ∈ G and n · h′ = g, then n(h − h′) = 0 and since the
group is torsion-free, we have h = h′. We can thus define m

n · g = m · h. It is easy to check that
this gives G the structure of a Q-vector space. If conversely (V, 0,+,−, 〈mq | q ∈ Q〉) is a Q-vector
space, then it is clear that (V, 0,+,−) is a torsion-free divisible abelian group. �

We now turn to algebraically closed fields. Recall that a field is called algebraically closed if
every polynomial f(X) ∈ K[X] has a root in K. If moreover K ⊆ L are fields, then an element
x ∈ L is called algebraic over K if it is the solution to some polynomial in K[X] and transcendent
otherwise. Moreover L is called algebraic over K if each of its elements is algebraic over K. The
characteristic of a field K = (K, 0, 1,+,−, ·) is the least n > 0 with n · 1 = 0 if this exists and
0 otherwise. Since for all a, b 6= 0 we have a · b 6= 0, the characteristic n is necessarily a prime
number; if n = m · k with m, k > 1, then (m · 1) · (k · 1) = 0 in K and hence one of m · 1 and k · 1
is equal to 0, contradicting the minimality of n.

We first recall some facts about fields and polynomials over fields. In the following, we will
use without proof that polynomial division is possible in K[X].5 Note that no finite field K is
algebraically closed, since for K = {a0, . . . , an} the polynomial f(X) = (X−a0) · · · · · (X−an)+1
has no root in K. We further call a polynomial f in the polynomial ring K[X] irreducible if there
are no polynomials g, h ∈ K[X] of degrees deg(g),deg(h) > 0 with f = g · h; for example the
polynomial X2 + 1 is irreducible over R. Moreover, a greatest common divisor of two polynomials
f, g ∈ K[X] is a polynomial h ∈ K[X] with leading coefficient 1 that is a divisor of both f and g
and a polynomial multiple of every other common divisor of f and g.

Fact 2.1.7. If f and g are non-zero polynomials in K[X], then there is a unique greatest common
divisor h ∈ K[X] of f and g and there are polynomials f ′, g′ ∈ K[X] with f · f ′ + g · g′ = h.

This is easy to show by taking the unique non-zero polynomial h ∈ {f ·f ′+g ·g′ | f ′, g′ ∈ K[X]}
of minimal degree with leading coefficient 1 and using polynomial division.

An ideal in a commutative ring (R, 0, 1,+,−, ·) is a subgroup I of R with R · I ⊆ I and the
least ideal containing some x ∈ R is denoted by (x) = R · x. If I is an ideal in R, then is it easy
to check that R/I = {x+ I | x ∈ R} forms a ring with addition (x+ I) + (y + I) = x+ y + I and
multiplication (x+ I) · (y + I) = (x · y) + I.

Lemma 2.1.8. If f is an irreducible polynomial in K[X], then the ring L = K[X]/(f) is a field
that contains a root of f . Moreover dimK(L) ≤ n if deg(f) = n.

Proof. Let I = (f). To see that L is a field, it is sufficient to show that every nonzero element
g+ I of L has a multiplicative inverse. Since g /∈ I, f does not divide g and since f is irreducible,
the greatest common divisor h ∈ K[X] of f and g is equal to 1. Hence there are polynomials
f ′, g′ ∈ K[X] with f · f ′ + g · g′ = 1. Since f · f ′ ∈ I, we have g · g′ + I = 1 + I and hence
(g + I)(g′ + I) = 1 + I, so g′ + I is a multiplicative inverse to g + I.

Moreover, it is clear that X + I is a root of f in L. To finally see that dimK(L) ≤ n, suppose
that f(X) = a0 + a1X + · · ·+ anX

n, where an 6= 0. Then Xn = a0
an

+ · · ·+ an−1

a0
Xn−1 and hence

every element g+ I in L is equal to h+ I for some polynomial h of degree deg(h) < n. Therefore
X,X2, . . . , Xn−1 generates L as a K-vector space. �

Suppose that K is a subfield of L and x ∈ L \K is algebraic over K. The minimal polynomial
f ∈ K[X] of x over K is defined as the unique polynomial of minimal degree with leading coefficient
1 and f(x) = 0. It can be checked that this divides all polynomials g ∈ K[X] with g(x) = 0.
This implies that the map h : K[X]/(f)→ K(x) is an isomorphim, where K(x) denotes the least
subfield of L that contains K and x.

This implies the following fact: if K ⊆ L are fields and x ∈ L, then x is algebraic over K if and
only if dimK(K(x)) is finite.

If K is a field, an algebraic closure of K is a field K̄ ⊇ K that is both algebraically closed and
algebraic over K.

Theorem 2.1.9. Every field K has an algebraic closure K̄ that is unique up to isomorphism.

5A proof of this can be found in any textbook in algebra.
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Proof. Suppose that |K| = κ and λ = max{κ, ω}+. Let C be the set of fields L ⊇ K that are
algebraic over K and whose domain is a subset of λ. Note that every algebraic field extension of K
has size strictly less than λ, since every polynomial has only finitely many roots. Hence for every
field that is algebraic over K, there is an isomorphic field in C. We order C by extension of fields.
Since C is closed under increasing unions, it has a maximal element K̄ by Zorn’s lemma. Towards
a contradiction, suppose that K̄ is not algebraically closed. Let f(X) ∈ K̄[X] with no roots in K̄.
We can write f as a product f = f0·· · ··fn of irreducible factors fi ∈ K̄[X]. By the previous lemma,
there is a proper algebraic extension L of K̄ in which f0 has a root. Now suppose that an arbitrary
element of L is given. It is the root x of some polynomial g(X) = a0 + a1X + · · ·+ anX

n ∈ K̄[X].
Since ai is algebraic over K for all i ≤ n, these elements generate a an extension K(a0, . . . , an)
of K that is finite-dimensional as a vector space over K. Since x is algebraic over K(a0, . . . , an),
K(a0, . . . , an, x) is finite dimensional over K as a K-vector space and hence it is an algebraic
extension of K. Hence L is algebraic over K, contradicting the maximality of K̄.

To prove uniqueness, suppose that L and M are two algebraic closures of K. By Zorn’s lemma,
there is a maximal isomorphism π : L′ →M ′, where L′ and M ′ are subfields of L and M . Towards
a contradiction, we assume that L′ 6= L or M 6= M ′ and we can hence assume that L′ 6= L. We
can further assume that L′ = M ′ and π = idL′ . Now let x ∈ L \ L′ and f ∈ L′[X] irreducible
with f(x) = 0. Then σ : L′[X]/(f) → L′(x), σ(g + (f)) = g(x) is a field isomorphism, since
ker(σ) = {g + (f) | g(x) = 0} = 0. Since M is algebraically closed, there is some y ∈ M \M ′
with f(y) = 0. Then τ : L′[X]/(f) → L′(y), τ(g + (f)) = g(y) and τσ−1 : L′(x) → L′(y) are
isomorphisms, but this contradicts the fact that π is maximal. �

The algebraic closure of Q is simply the set of algebraic numbers in C, since C is algebraically
closed. We now aim to describe the algebraic closure of the fields Fp = Z/pZ, where p is a prime.
To see that Fp is a field, note that for any x, y ∈ Fp, we have (x+y)p =

∑
i≤p
(
p
i

)
xiyp−i = xp+yp,

since the remaining binomial coefficients cancel out. We now claim that xp = x and hence
x · xp−2 = 1 for all x ∈ Fp. This holds for 0 and 1 and the previous equation shows that it holds
for all elements of Fp by induction.

Note that every field K of characteristic p for a prime p contains an isomorphic copy of Fp,
namely the subset {n · 1 | n < p} of K. We now fix an algebraic closure K̄ of K = Fp. Note that
any finite field extension of Fp with Fp-dimension n has size pn.

Lemma 2.1.10. For every n > 0, there is a field Fpn of characteristic p and size pn that is unique
up to isomorphism.

Proof. Letting q = pn, we first prove that there is a subfield of K̄ with these properties. The
polynomial f = Xq − X ∈ Fp[X] has no repeated factors, since its formal derivative is f ′ =
(Xq −X)′ = qXq−1 − 1 = −1 and therefore f and f ′ have no common factors. Let x0, . . . , xq−1

be the distinct roots of f in K̄ and Fq = Fp(x0, . . . , xq−1) The field extension generated by
x0, . . . , xq−1.

We now claim that Fq = {x0, . . . , xq−1}. To see this, let F : K̄ → K̄, F (x) = xq. We have
(x+ y)q =

∑
i≤q
(
q
i

)
xiyq−i = xq + yq and clearly (x · y)q = xq · yq for all x, y ∈ K̄. Since F (x) = x

holds for all x ∈ Fp and x ∈ {x0, . . . , xq−1}, the same holds for all elements of Fp(x0, . . . , xq−1)
by these equations. But {x0, . . . , xq−1} is the set of all solutions of the equation F (x) = x in K̄.

It is sufficient to prove uniqueness inside K̄, since every algebraic extension of Fp embeds into
K̄ by the uniqueness of algebraic closures. To this end, assume that L is such a subfield of K̄ and
L× is the set of non-zero elements of L. Since |L×| = pn−1, we have xp

n−1 = 1 and hence xq = x
for all x ∈ L. Hence L ⊆ Fq and thus L = Fq. �

Remark 2.1.11. The function F is called the Frobenius automorphism (depending on q). The
previous proof shows that it is a field homomorphism of K̄. Since Fm fixes Fqm for every m ∈ N,
F �Fqm is an automorphism of Fqm which fixes exactly the elements of Fq.

It follows from the previous lemma that K̄ =
⋃
n∈N Fpn . Moreover we can write K̄ as an

increasing union of fields Fpn! , since this is the set of roots of Xpn! −X and we have Fpm ⊆ Fpn
for all m,n ∈ N with m|n.
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We aim to define the transcendence degree of field extensions. To this end, we will assume
that K, L and M are algebraically closed fields with K ⊆ L,M . A subset A of L is alge-
braically independent over K if for all a0, . . . , an ∈ A and f ∈ K[X0, . . . , Xn] with f 6= 0, we
have f(a0, . . . , an) 6= 0. Moreover, a trancendence base of L over K is a maximal algebraically
independent subset of L over K. If A is such a base, it follows that L is an algebraic extension of
K(A) and in fact for every x ∈ L, there is a polynomial with coefficients in K[A] with f(x) = 0.

We can use the next lemma to show that the size of transcendence bases is unique.

Lemma 2.1.12. (Exchange property) Suppose that A and B are transcendence bases of L over
K and b ∈ B, then there is some a ∈ A such that A′ = (A \ {a}) ∪ {b} is a transcendence base of
L over K.

Proof. Suppose that f ∈ K[X0, . . . , Xn+1] is non-zero with f(a0, . . . , an, b) = 0, where a0, . . . , an ∈
A and n is minimal. Let a = an (we could also let a = ai for any other i ≤ n). We now write
f(X0, . . . , Xn, X) =

∑
j≤m fj(X0, . . . , Xn−1, X)Xj

n for some m ∈ N with fm(X0, . . . , Xn−1, X) 6=
0. Since n is minimal, we have fm(a0, . . . , an−1, b) 6= 0 and hence a is algebraic overK(a0, . . . , an−1, b)
as witnessed by f .

We first claim thatA′ is algebraically independent. Otherwise b is algebraic overK(a0, . . . , an−1).
Since a is algebraic overK(a0, . . . , an−1, b), this would imply that a is algebraic overK(a0, . . . , an−1),
but this contradicts the assumption.

It remains to show that A′ is a maximal algebraically independent set. Since a is algebraic over
A′, L is an algebraic extension of L(A′) and hence A′ is maximal. �

By successively replacing elements of A with elements of B in a transfinite induction, we obtain
that |A| = |B|. We can thus define the transcendence degree of L over K are unique size of a
transcendence base. If K is the algebraic closure of Q or Fp (depending on the characteristic),
then this is simply called the transcendence degree of L.

Lemma 2.1.13. Any two algebraically closed fields of the same characteristic and transcendence
degree are isomorphic.

Proof. Suppose that A and B are transcendence base of algebraically closed fields L and M over K
and F : A→ B is a bijection. Then F extends uniquely to a ring isomorphism F : K[A]→ K[B]
and hence to an isomorphism between the fields of fractions K(A) and K(B). Then L is an
algebraic closure of K(A), M is an algebraic closure of K(B) and hence they are isomorphic by
the uniqueness of algebraic closures. �

Let ACFp denote the theory of algebraically closed fields of characteristic p, where p = 0 or p
is a prime.

Example 2.1.14. ACFp is not ℵ0-categorical, but κ-categorical for all uncountable cardinals κ.
This follows from the fact that two algebraically closed fields with characteristic p are isomorphic
if and only if their transcendence degree is equal.

By Vaught’s test (Lemma 2.1.1), ACFp is complete. We now derive some consequences of this
fact.

Lemma 2.1.15. (Lefschetz principle) The following conditions are equivalent for any sentence ϕ
in the language LR of rings.

(a) ϕ holds in every algebraically closed field of characteristic 0.
(b) ϕ holds in the complex numbers.
(c) ϕ holds in some algebraically closed field of characteristic 0.
(d) There is some n ∈ N such that for all primes p > n, ϕ holds in all algebraically closed fields

of characteristic p.
(e) There are arbitrarily large primes p such that ϕ holds in some algebraically closed field of

characteristic p.

Proof. The implications from (a) to (b) and from (b) to (c) are clear. Assuming (c) we have that ϕ
holds in C and thus ACF0 |= ϕ, since ACF0 is complete. Therefore there is a finite set ∆ ⊆ ACF0

with ∆ |= ϕ and hence ACFp |= ϕ if p is sufficiently large. The implication from (d) to (e) is again
clear. If (e) holds, we assume towards a contradiction that ACF0 6|= ϕ. Since ACF0 is complete,
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we have ACF0 |= ¬ϕ. By the implication from (a) to (d) for ¬ϕ, we have that ¬ϕ holds in all
algebraically closed fields of sufficiently large characteristic, contradicting the assumption. �

Theorem 2.1.16. Every injective polynomial map from Cn to Cn is surjective.

Proof. We first show this for the algebraic closure F̄p of Fp for all primes p. Suppose that
f : (F̄p)n → (F̄p)n is given by polynomials p0, . . . , pk with coefficients a0, . . . , al ∈ F̄p and it is
injective, but some b ∈ F̄p is not in its range. The subfield K ⊆ F̄p generated by a0, . . . , ak, b is
finite and the polynomials p0, . . . , pk define an injective map f ′ : K → K. Since K is finite f ′ is
surjective, contradicting the assumption that b /∈ ran(f ′).

Suppose that there is a counterexample that is given by polynomials of degrees at most d. Let
Φn,d be the first-order statement that every injective polynomial map with n inputs and outputs
that is given by polynomials of degrees at most d is surjective. Since AFCp |= Φn,d, this holds in
C as well by Lemma 2.1.15. �

2.2. Amalgamation classes. An L-structure M of size κ is called κ-categorical if its theory
ThL(M) is κ-categorical. The following amalgamation technique (Fraisse construction) leads to
the construction of ℵ0-categorical structures.

Definition 2.2.1. Suppose that L is a language and M = (M, . . . ) is an L-structure.

(a) If A is a subset of M , let 〈A〉M denote the least substructure of M whose domain contains
A.

(b) A substructure of M is called finitely generated if it is equal to 〈A〉M for some finite subset
A of M.

(c) The skeleton (or age) of M is the class of all finitely generated L-structures that are iso-
morphic to a substructure of M.

(d) M is (ultra-)homogeneous if any isomorphism between finitely generated substructures can
be extended to an automorphism.

Suppose that C is an L-structure and for every isomorphism f : A → B between finitely gen-
erated substructures of C and any a ∈ C, there is an isomorphism f ′ : A′ → B′ that extends f ,
where A′ is the substructure of C generated by A ∪ {a} and B′ is a substructure of C. We can
then extend f to an automorphism of C by inductively applying this condition to the isomorphism
and its inverse. Hence this condition is equivalent to homogeneity. Moreover it is a first-order
statement if L is a finite relational language.

Lemma 2.2.2. Any two countable homogeneous structures with the same skeleton are isomorphic.

Proof. Assume that M and N are homogeneous L-structures with the same skeleton. Moreover,
assume that f : A → B is an isomorphism between finitely generated substructures of M and N
and a ∈M \A. It is sufficient to show that f can be extended to an isomorphism whose domain
contains a. We can then obtain an isomorphism by a back-and-forth construction as in Theorem
2.1.3.

Let A′ be the substructure of M generated by A∪{a}. Since M and N have the same skeleton,
there is a finitely generated substructure C ′ of M and an isomorphism g : A′ → C ′. Let C denote
the image of A under g. Since N is homogeneous, there is an automorphism h of N that extends
f ◦(g−1�C) : C → B. Let B′ denote the image of C ′ under h. Since h : C ′ → B′ is an isomorphism
extending f ◦ (g−1�C) : C → B, h ◦ g : A′ → B′ is an isomorphism extending f : A → B as
required. �

Definition 2.2.3. A class K of finitely generated L-structures is called an amalgamation class
(or Fraisse class) if it satifies the following properties.

(a) (Heredity) IfA ∈ K, then any structure that is isomorphic to a finitely generated substructure
of A is an element of K.

(b) (Joint embedding) If A,B ∈ K, then there is some C ∈ K and embeddings f0 : A → C and
f1 : B → C.

(c) (Amalgamation) If A,B, C ∈ K and f0 : A → B, f1 : A → C are embeddings, then there is
some D ∈ K and embeddings g0 : B → D, g1 : C → D with g0 ◦ f0 = g1 ◦ f1.

Note that the amalgamation property does not imply the joint embedding property; the former
holds but the latter fails for the class of finite fields.
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Theorem 2.2.4. (Fraisse) A countable class of L-structures is an amalgamation class if and only
if it is the skeleton of a countable homogeneous L-structure.

Proof. Let K be a countable class of L-structures. We first assume that K is the skeleton of a
homogeneous structure M . Heredity and the joint embedding property are obvious. To show
amalgamation, suppose that f0 : A→ B and f1 : A→ C are as above. We can assume that A, B
and C are subsets of M and f0 = idA. Since M is homogeneous, there is an automorphism h of M
that extends f1. Then D = 〈B ∪ h(C)〉M amalgamates B and C by the embeddings idB : B → D
and h−1�C : C → D.

We now assume that K is an amalgamation class. We will construct a structure as required

whose domain is a subset of N . Let ~K = 〈Kl | l ∈ N〉 enumerate K and let 〈al, bl, fl | l ∈ N〉
enumerate all triples of the form (~a,~b, f) such that each triple appears infinitely often, where ~a

and ~b are tuples in N and f : N → N is a partial function with domain ~a and range ~b.

We will construct the required structure as a union of an increasing sequence ~C = 〈Cn | n ∈ N〉
of elements of K, starting with C0 = K0. We now assume that Cn is already constructed. If
n = 2l is even, we apply the joint embedding property to Cn and Kl and obtain an element

Cn+1 of K. We now assume that n = 2l + 1 is odd. If at least one of ~al or ~bl is not a subset of

Cn, let Cn+1 = Cn. If on the other hand both ~al and ~bl are subsets of Cn, then we apply the
amalgamation property to idAl

: Al → Cn and the embedding f : Al → Bl that is induced by fl
from the substructure Al of Cn generated by ~al to the stubstructure Bl of Cn generated by ~bl,
and obtain an element Cn+1 of K. Moreover we can choose Cn+1 such that the embedding from
Cn to Cn+1 is equal to idCn

and Cn is a substructure of Cn+1.

Let C =
⋃ ~C. The even steps of the construction ensure that K is the skeleton of C. To prove

that C is homogeneous, it is sufficient to show that for any isomorphism f : A→ B between finitely
generated substructures of C and any b ∈ C\B, there is a partial isomorphism f ′ : A′ → B′ between
finitely generated substructures of C that extends f and whose range contains b. So suppose that
n = 2l+1 is odd and fl induces the embedding f : A→ 〈B∪{b}〉C ; such a number l exists because
each function appears infinitely often in the enumeration above. In step n+ 1 of the construction
the structures Bl and Cn are amalgamated over Al to Cn+1, i.e. amalgamation is applied to
fl : Al → Bl and idAl

: Al → Cn to obtain an embedding g : Bl → Cn+1 with g ◦ fl = idAl
(since

Cn+1 is chosen such that we obtain the embedding idCn : Cn → Cn+1). Let a = g(b). Then
(g�Bl)−1 : 〈A ∪ {a}〉C → Bl is an isomorphism as required. �

In the situation of Lemma 2.2.4, the countable homogeneous structure is unique by Lemma
2.2.2 and is called the Fraisse limit of K. The next result shows that homogeneity is equivalent
to amalgamation.

Problem 2.2.5. Show that a class K of finitely generated L-structures is hereditary and has the
joint embedding property if and only if it is the skeleton of a countable L-structure.

Theorem 2.2.6. If L is a finite relational language and K is a Fraisse class of finite L-structures,
then its Fraisse limit is ℵ0-categorical.

Proof. Let C denote the Fraisse limit of K. Let TL be a theory that characterizes homogeneity of a
structure (as above). Let ϕA be the statement that there is a substructure of C that is isomorphic
to A for any A ∈ K and ΦK the set of all such sentences. Moreover let ψA be the statement that
no finite substructure of C is isomorphic to A for any finite L-structure that is not an element of
K and ΨK the set of all such sentences. Then C is a model of the theory TK = TL ∪ ΦK ∪ ΨK.
Moreover any model of T has K as its skeleton and is homogeneous; by uniqueness of Fraisse limits
it is isomorphic to C. �

It is easily checked that the classes of structures in the next two examples are amalgamation
classes.

Example 2.2.7. It is easy to see that the following classes of structures are amalgamation classes.

(a) The class of finite-dimensional vector spaces over a fixed countable field.
(b) The class of finite (undirected) graphs.
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The Fraisse limit of the class of finite (undirected) graphs is called the random graph. To
understand the structure of this graph, we fix a binary relation symbol R and let L = {R} be the
language of (undirected) graphs. Then the random graph G is the unique model of the theory TK
above up to isomorphism.

We can also characterize the random graph by the following extension property. Let L = {R}
and TRG the theory that consists of the axiom ψsym = ∀x, y(xRy → yRx) and the scheme of
axioms σm,n defined as

∀x0, . . . , xm−1, y0, . . . , yn−1(
∧

i<m∧j<n
xi 6= yj → ∃z(

∧
i<m

zRxi ∧ z 6= xi) ∧ (
∧
j<n

¬zRyj ∧ z 6= yj)).

Lemma 2.2.8. The theories TRG and TK have the same models.

Proof. It is easy to see that the extension property implies that the skeleton is equal to K. Thus
it is sufficient to show that for structures with skeleton K, the extension property is equivalent to
homogeneity.

To show that any model C of TRG is homogeneous, suppose that f : A→ B is an isomorphism
between finite substructures of C and a ∈ C \ A. The extension property allows us to find some
b ∈ C such that the extension g : A ∪ {a} → B ∪ {b} of f with g(a) = b is an isomorphism.

Conversely suppose that H is a model of TK and A = {a0, . . . , am−1, a
′
0, . . . , a

′
n−1} is a finite

subset of H. Since the skeleton of H is K, there is a finite subset B = {b, b0, . . . , bm−1, b
′
0, . . . , b

′
n−1}

of H such that the function f : A→ B defined by f(ai) = bi and f(a′i) = b′i is an embedding and
we have bRbi for all i < m and ¬bRb′j for all j < n. Since C is homogeneous, there is some a ∈ A
and an isomorphism g : B → A ∪ {a} that extends f−1. Hence a witnesses this instance of the
extension property. �

To introduce the following random graphs, we fix the following notation. Let N ∈ N or N = N
with the convention that N ≤ N and N is identified with {0, . . . , N −1} for all N ∈ N. We further
say that a property holds for all sufficiently large N if there is some N0 ∈ N such that this property

holds for all N ≥ N0. Moreover, recall that a sequence ~ζ = 〈ζn | n ∈ I〉 of random variables is
mutually independent if P ((ζm0

, . . . , ζmk
) ∈ A | (ζn0

, . . . , ζnl
) ∈ B) = P ((ζm0

, . . . , ζmk
) ∈ A) for

all distinct m0, . . . ,mk, n0, . . . , nl ∈ I and all measurable sets A and B.
The random graph was introduced by Erdös and Renyi by the following probabilistic definition.

Suppose that ~ξ = 〈ξm,n | m,n ∈ N, m 6= n〉 is a sequence of mutually independent random
variables with Bernoulli distribution with values 0 and 1 and p = 0.5. Let GN denote the random
graph with vertex set N such that there is an edge between i and j if and only if ξi,j = 1. If ϕ is
an L-sentence, we let pN (ϕ) = P (GN |= ϕ) denote the probability that ϕ holds in GN .

Lemma 2.2.9. For all m,n ∈ N and ε > 0, we have 1−pN (σm,n) < ε for all sufficiently large N .

Proof. Suppose that x, x0, . . . , xm−1, y0, . . . , yn−1 are distinct elements of GN . Since the random

variables in ~ξ are mutually independent, the statement that the extension property holds for
these values is 2−(m+n). By considering all possible values for x, it follows that σm,n is false

with probability 1 − pN (σm,n) = (1 − 2−(m+n))N−(m+n). But this value converges to 0 as N
increases. �

Theorem 2.2.10. (0-1-law for graphs) For any L-sentence ϕ either limN→∞ pN (ϕ) = 1 or
limN→∞ pN (ϕ) = 0; the limit is 1 if and only if TRG |= ϕ.

Proof. Since TRG is complete by Vaught’s test 2.1.1, we have TRG |= ϕ or TRG |= ¬ϕ. If TRG |= ϕ,
then there are m,n with |= ψsym∧σm,n → ϕ. Hence pN (ϕ) ≥ pN (σm,n) and thus limN→∞ pN (ϕ) =
1 by Lemma 2.2.9. Otherwise we have TRG |= ¬ϕ and then limN→∞ pN (ϕ) = limN→∞(1 −
pN (¬ϕ)) = 0. �

Turning again to fields: the proof of the uniqueness of algebraic closures shows that the algebraic
closures of Q and Fp for primes p are homogeneous structures. Hence for each of these fields, the
class of its algebraic extensions is an amalgamation class.

Problem 2.2.11. Show directly that the class of finite fields with a fixed prime characteristic p
is an amalgamation class by checking the conditions on amalgamation classes.
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Note that all theories that we have considered in this section have computable axiomatizations,
i.e. there is an algorithm deciding which sentences are axioms. In fact the theories DLO, AFCp for
primes p and the theory of vector spaces over a fixed finite field even have finite axiomatizations.
To see that completeness of these theories implies that they are decidable, consider an algorithm
that enumerates all provable sentences ϕ; then for any sentence ϕ, either ϕ or ¬ϕ appears at some
stage of the enumeration by completeness.

3. Quantifier elimination and applications

In general, we would like to understand the properties of arbitrary definable subsets of a struc-
ture. The subsets that are definable without quantifiers are usually easier to study: for a field
they are Boolean combinations of sets of zeros of polynomials; for a linear order they are Boolean
combinations of (possibly unbounded) intervals. However, in some structures every definable set
is of this form: A theory has quantifier elimination if every formula is equivalent to some fixed
quantifier-free formula in all models of the theory. This yields that every definable sets is in fact
definable by a quantifier-free formula. Several such theories are mentioned in Section 3.2. For
instance:

• DLO has quantifier elimination.
• ACFp has quantifier elimination for any characteristic p.
• The theory TRG of the random graph has quantifier elimination.

3.1. A criterion for quantifier elimination. We first give the definition of quantifier elimina-
tion and then describe a quite useful criterion for proving it.

Definition 3.1.1. A theory T in a language L has quantifier elimination if and only if any
L-formula ϕ(x0, . . . , xn−1) is equivalent modulo T to a quantifier-free formula ψ(x0, . . . , xn−1),
i.e.

T |= ϕ(x0, . . . , xn−1)↔ ψ(x0, . . . , xn−1).

The atomic diagram Diag(M) of an L-structure M = (M, . . . ) is defined as the set of basic
LM -formulas that are true in M. In the following proof, we will further write ~x = (x0, . . . , xn),
~a = (a0, . . . , an).

The following is a useful test for quantifier elimination; Lemma 3.1.5 below shows that it is
sufficient to check condition (b) only for primitive existential formulas (defined below).

Lemma 3.1.2. If M = (M, . . . ) is an L-structure, T is an L-theory and ϕ(x0, . . . , xn) is an
L-formula, then the following statements are equivalent.

(a) There is a quantifier-free L-formula ψ(~x) with T |= ∀~x(ϕ(~x)↔ ψ(~x)).
(b) If M = (M, . . . ) and N = (N, . . . ) are models of T and A = (A, . . . ) is a substructure of

both M and N , then M |= ϕ(a0, . . . , an)⇔ N |= ϕ(a0, . . . , an) for all a0, . . . , an ∈ A.

Proof. The first implication follows from the fact that quantifier-free statements about elements
of A are absolute between A, M and N . We now assume that (b) holds. If T |= ∀~xϕ(~x), then
let ψ = > (the true statement) and if T |= ∀~xϕ(~x), then let ψ = ⊥ (the false statement). We can
thus assume that both T ∪ {ϕ(~x)} and T ∪ {¬ϕ(~x)} are consistent. We choose new constants and

(d0, . . . , dn) and write ~d = (d0, . . . , dn). Let

Γ(~x) = {ψ(~x) | ψ(~x) ∈ FormL is quantifier-free and T ∪ {ϕ(~x)} |= ψ(~x)}
denote the set of quantifier-free consequences of T ∪ {ϕ(~x)}.

Claim 3.1.3. T ∪ Γ(~d) |= ϕ(~d).

Proof. Assuming otherwise, there is a modelM of T ∪Γ(~d)∪{¬ϕ(~d)}. Let A be the substructure

ofM that is generated by ~dM = (dM0 , . . . , dMn ). We now show that the theory Σ = T ∪Diag(A)∪
{ϕ(~d)} is consistent. Assuming that it is inconsistent, there are ψ0(~d), . . . , ψn(~d) ∈ Diag(A) such

that T |=
∧
i≤m ψi(

~d) → ¬ϕ(~d) and hence T |= ϕ(~d) →
∨
i≤m ¬ψi(~d). So

∨
i≤m ¬ψi(~d) ∈ Γ(~d).

Since M |= Γ(~d) and Γ(~d) only contains quantifier-free formulas, we have A |= Γ(~d). So A |=∨
i≤m ¬ψi(~d) and thus there is some i ≤ m with A |= ¬ψi(~d). But this contradicts the fact that

ψi(~d) ∈ Diag(A). Since we have now shown that Σ is consistent, let N be a model of Σ. Then N
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is a model of T ∪ {¬ψ(~d)} and we can hence assume that it contains A as a substructure. Since

M is a model of T ∪{ψ(~d)} that contains A as a substructure and ~dM = ~dN ∈ A, this contradicts
our assumption (b). �

By the completeness theorem, there are finitely many sentences θ0(~d), . . . , θk(~d) ∈ Γ(~d) such

that Γ(~d) |= θ(~d) for θ(~d) =
∧
i≤k θi(

~d). Then T |= θ(~d) ↔ ϕ(~d) and hence T |= ∀~x(θ(~x) ↔
ϕ(~x)). �

We now want to see that it is sufficient to show absoluteness for a very restricted class of
existential formulas.

Definition 3.1.4. A formula ψ is called simple existential if it is of the form ∃xϕ for some
quantifier-free formula ϕ. If ϕ is moreover a conjunction of basic formulas (i.e. formulas of the
form ψ or ¬ψ, where ψ is atomic), then ψ is called primitive existential.

The next lemma shows that primitive existential formulas are sufficient.

Lemma 3.1.5. An L-theory T has quantifier elimination if and only if every primitive existential
formula is equivalent modulo T to a quantifier-free formula.

Proof. Suppose that this condition holds and ∃xϕ(x) is a simple existential formula. By writing
ϕ in disjunctive normal form

∨
i<n ϕi, ∃xϕ(x) is equivalent to the formula

∨
i<n ∃xϕi(x). By

the assumption, this is equivalent modulo T to a quantifier-free formula. Given an arbitrary L-
formula, we can write it in prenex normal form Q0x0 . . . Qnxnϕ(x0, . . . , xn), where Qi ∈ {∀,∃}
for all i ≤ n and ϕ is quantifier-free. We now proceed by induction n. If Qn = ∃, then we
find a quantifier-free formula ψ that is equivalent modulo T to ∃xnϕ(x0, ,̇xn) and proceed with
Q0x0 . . . Qn−1xn−1ψ(x0, . . . , xn−1). If Qn = ∀, then we find a quantifier-free formula ψ that is
equivalent modulo T to ∃xn¬ϕ(x0, ,̇xn) and proceed with Q0x0 . . . Qn−1xn−1¬ψ(x0, . . . , xn−1).

�

Combined with Lemma 3.1.2, this is a useful test for quantifier elimination. Many theories
T have the additional property of having algebraically prime models (see [Mar02, p. 78]): For
any substructure A of a model of T , there is a model A∗ of T that extends A such that every
embedding f : A → N into a model of T extends to an embedding g : A∗ → N . For example, for
a subring A of a model of T , a theory that contains the field axioms, its quotient field A∗ has this
property. It is easy to see that for such theories, it suffices to check condition (b) for N = A (and
only for primitive existential formulas by Lemma 3.1.5).

Quantifier elimination is often used as a tool to prove completeness. For instance, this follows
immediately if the theory has a prime structure, which is defined as follows.

Definition 3.1.6. Suppose that T is an L-theory and M is a model of T .

(a) M is a prime structure for T if it can be embedded into every model of T .
(b) M is a prime model for T if it can be elementarily embedded into every model of T .

If a theory T has quantifier elimination and a prime structure M, then this is also a prime
model by absoluteness of quantifier-free formulas. So clearly T is complete. Some examples of
this are mentioned in the beginning of the next section.

3.2. Some theories with quantifier elimination. Using the criterion in the previous section,
it is easy to show quantifier elimination for the following theories:

Example 3.2.1. The theory DLO of dense linear orders without end points and the theory TRG
of the random graph have quantifier elimination. Since the are ℵ0-catergorical, they have prime
models are therefore complete.

We now show quantifier elimination for vector spaces and algebraically closed fields.

Lemma 3.2.2. The theory of infinite-dimensional vector spaces over a fixed field K has quantifier
elimination.
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Proof. Suppose that V0 and V1 are K-vector spaces of infinite dimension that both contain a K-
vector space V of infinite dimension. Suppose that ψ = ∃xϕ(x, x0, . . . , xn) is a simple existential
formula that holds in V0 for some a0, . . . , an ∈ V , witnessed by some a ∈ V0. If a ∈ V then ψ
holds in V1, so suppose that a ∈ V0 \ V . Let b ∈ V1 \ V and let A and B be subspaces of V0 and
V1 of K-dimension ω that contain a0, . . . , an with a ∈ A and b ∈ B. Since ϕ is quantifier-free,
A |= ϕ(a, a0, . . . , an). Since there is an isomorphism from A to B that maps each ai to bi and a
to b, we have B |= ϕ(b, a0, . . . , an). Hence V |= ∃xϕ(x, a0, . . . , an). �

With a slight adjustment, this can also be shown for arbitrary vector spaces over a fixed infinite
field.

Problem 3.2.3. Show that for infinite fields K, Lemma 3.2.2 holds for the theory of arbitrary
K-vector spaces.

For both finite and infinite fields K, it is easy to see that the theory of infinite K-vector spaces
has a prime model. Therefore it is complete.

Theorem 3.2.4. For any characteristic p, the theory ACFp has quantifier elimination.

Proof. Suppose that L and M are algebraically closed fields of characteristic p and R is a substruc-
ture of both, i.e. a subring. Then the quotient fields of R in L and M are isomorphic and hence
we can assume that they are equal and denote this field by K. Moreover the proof of uniqueness
of algebraic closures shows that there is an isomorphism between the algebraic closures of K in L
and M that is the identity on K. We can thus assume that there is an an algebraic closure K̄ of
K that is contained in both L and M .

We now assume that some primitive existential formula ∃xϕ(x, x0, . . . , xn) holds in L for some
a0, . . . , an ∈ R. Moreover assume that this is witnessed by some a ∈ L. If a ∈ K̄, then
ϕ(a, a0, . . . , an) holds in M , since ϕ is quantifier-free and hence absolute. We can thus assume
that a /∈ K̄. Suppose that ϕ(x) = (

∧
i<k fi(x) = 0) ∧ (

∧
j<l gj(x) 6= 0), where fi and gj are

polynomials over R. Then fi(a) = 0 for all i < k. Since a is not algebraic over K, each fi is
the zero polynomial. Since gj 6= 0 in R[X] for all j < l, the polynomial x ·

∏
j<l gj(x) + 1 is not

constant and hence has a root b in M . Hence gj(b) 6= 0 for all j < l and thus M |= ϕ(b, a0, . . . , an).
6 �

Again, the theory ACFp has a prime model and we thus have another proof of its completeness.
Moreover, quantifier elimination can be used to prove the following result.

Problem 3.2.5. Show that definable subsets of algebraically closed fields are finite or co-finite.

We now give some examples for using quantifier elimination for ACFp to obtain elegant proofs
of some results in field theory.

Theorem 3.2.6. (Hilbert’s Nullstellensatz) Suppose that K is an algebraically closed field and
f0, . . . , fn ∈ K[X] such that I = (f0, . . . , fn) is proper ideal in K[X0, . . . , Xn] (i.e. 1 /∈ I). Then
there are a0, . . . , an ∈ K such that fi(a0, . . . , an) = 0 for all i ≤ n.

Proof. By Zorn’s Lemma applied to the set of proper ideals J in K[X] that contain I, there is a
maximal ideal J in K[X0, . . . , Xn] containing I. Since J is a maximal ideal, L = K[X0, . . . , Xn]/J
is a field. Moreover we can identify K with a subfield of L by identifying a ∈ K with a+ I. For
each i ≤ k we have fi(X0 + J, . . . ,Xn + J) = fi(X0, . . . , Xn) + J = J , since fi(X0, . . . , Xn) ∈ I.
Hence ∃x0, . . . , xn

∧
i≤n fi(x0, . . . , xn) = 0 holds in L and thus also in its algebraic closure L̄. By

quantifier elimination for ACFp, this is also true in K ≺ L̄ and thus f0, . . . , fn have a common
zero in K as required. �

If K is an algebraically closed field, then a subset S of Kn is called constructible if it is a finite
Boolean combination of zero sets of polynomials in K[X0, . . . , Xn−1] and their complements. By
quantifier elimination, every definable subset of Kn is constructible (and conversely).

Lemma 3.2.7. (Chevalley) If K is an algebraically closed field, S is a constructible subset of Km

and f : Km → Kn is a polynomial function, then f(S) is constructible.

6The last step is different in the proof of [TZ12, Theorem 3.3.11].
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Proof. Suppose that f is given by the polynomials g0, . . . , gn−1 ∈ K[X0, . . . , Xm−1]. Then
(a0, . . . , an−1) ∈ f(S) ⇔ ∃x0, . . . , xm−1 ∈ K

∧
i<n gi(x0, . . . , xm−1) = ai. Thus f(S) is defin-

able and hence constructible. �

We now want to see that quantifier elimination for ACF0 and ACFp implies that for these
theories, the algebraic closure is equal to its model-theoretic version, which we now define.

Definition 3.2.8. Suppose that M = (M, . . . ) is an L-structure, ϕ(x) is an L-formula and
A ⊆M .

(a) Let ϕ(M) = {x ∈M | M |= ϕ(x)}.
(b) ϕ is called algebraic over M if ϕ(M) is finite.
(c) An element x ∈M is called algebraic over A if M |= ϕ(x) for some algebraic LA-formula.

(d) The algebraic closure acl(A) = aclM(A) of A in M is the set of all algebraic elements of M
over A.

(e) A is algebraically closed in M if acl(A) = A.

If A is a subset of an algebraically closed field K of characteristic p, then aclK is equal to
the standard algebraic closure (from algebra) by quantifier elimination for ACFp. To see this,
suppose that a ∈ acl(A) and ϕ(x) is a quantifier-free formula with parameters in A and only
finitely many solutions including a. By quantifier elimination, we can assume that it is quantifier-
free and replace it by a logically equivalent formula

∨
i∈I
∧
i∈Ji ϕi,j(x) with basic formulas ϕi,j .

Then a satisfies the formula ψ(x) =
∧
i∈Ji ϕi,j(x) for some i ∈ I – the same is true when the

basic inequalities ϕi,j(x) are removed. This conjunction of polynomial equations can be rewritten
as a single polynomial equation, showing that a is in the algebraic closure in the usual sense (as
defined in field theory).

Finally, we would like to mention some examples of theories without quantifier elimination.

Problem 3.2.9. Show that the theories of the structures (N, S) and (N,+) do not satisfy quantifier
elimination, where S is the successor function.

4. Various applications of types

A type is a maximal consistent (with respect to a theory) set of formulas with a fixed finite
number of (fixed) free variables. So it generalizes the notion of a theory by allowing free variables.
This notion is important for many results in model theory, and we will see some applications in
this section. In Section 4.1, we prove the omitting types theorem and study the spaces Sn(T ) of
n-types with respect to a fixed theory. We then use types to characterize the following properties
of theories.

• ℵ0-categoricity (Theorem 4.2)
• The existence of countable saturated models (Theorem 4.2.8)
• The existence of prime models (Theorem 4.3.4)

We will also use it to prove Vaught’s never two theorem (Theorem 4.2.9), which states that a
countable complete theory cannot have exactly two countable models up to isomorphism.

In the last sections, we will use types to study algebraic closure in saturated structures, a
connection between homogeneity and quantifier elimination, and facts about saturated structures.

4.1. Realizing and omitting types. We will see that every type can be realized, but only certain
types can be omitted. We first fix the following notation: if M = (M, . . . ) is an L-structure and
A ⊆M , let MA denote the LA-structure induced by M.

Definition 4.1.1. Suppose that T is a theory in a language L, M = (M, . . . ) an L-structure, A
a subset of M and a0, . . . , an−1 ∈M .

(a) An n-type (with respect to T ) is a maximal set t(x0, . . . , xn−1) of formulas ϕ(x0, . . . , xn−1)
that is consistent with T , for some fixed distinct variables x0, . . . , xn−1.

(b) Sn(T ) denotes the set of n-types; if T is complete then S0(T ) = {T}.
(c) The type

tp(a0, . . . , an−1/A) = tpM(a0, . . . , an−1/A)
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of a0, . . . , an−1 over A is defined as the set {ϕ(x0, . . . , xn−1) ∈ LA | MA |= ϕ(a0, . . . , an−1)}.
We will also write

tp(a0, . . . , an−1) = tpM(a0, . . . , an−1) = tpM(a0, . . . , an−1/∅).
(d) An n-type in LA is realized inM if it is equal to tp(a0, . . . , an−1) for some tuple (a0, . . . , an−1),

otherwise it is omitted in M.
(e) Let Sn(A) = SMn (A) = Sn(ThLA

(M)) denote the set of n-types over A.

A consistent set of formulas in free variables x0, . . . , xn−1 is often called a partial type. Note
that the types in (e) do not depend on the structureM but only on its theory and moreover, they
are not necessarily realized in M.

Here are two examples where the realization or non-realization of a type tells us something
interesting about the model.

Example 4.1.2. If N = (N , 0,+, ·, <) is the structure of natural numbers, then

Σ(x) = {n < x | n ∈ N}
is consistent, so it can be extended to an LN-type that is not realized in N . However, in every
non-standard model of Th(N ) some 1-type extending Σ(x) is realized.

Example 4.1.3. Consider the set Σ(x) = {p(x) 6= 0 | p ∈ Z[X] is non-constant} in the language
LR of rings. This is realized in the field extensions of Q with transcendence degree at least 1. In
particular it is not realized in the field Q̄ of algebraic complex numbers, but is realized in C.

We first show that all types can be simultaneously realized in a sufficiently large model.

Lemma 4.1.4. Every L-structure M = (M, . . . ) has an elementary extension N = (N, . . . ) in
which all types in LM over M (with respect to Th(M)) are realized.

Proof. Let S = {ti(xi0, . . . , xini
) | i ∈ I} be obtained by changing the variables in each such

type so that they are pairwise different. Then for any ϕ0(xi0, . . . , x
i
ni

), . . . , ϕk(xi0, . . . , x
i
ni

) ∈
ti(x

i
0, . . . , x

i
ni

), this type also contains the sentence ∃yi0, . . . , yini

∧
j≤k ϕj(y

i
0, . . . , y

i
ni

) and hence
there is a tuple in M that satisfies ϕj for all j ≤ k. Hence the theory

ThLM
(M) ∪

⋃
i∈I

ti(c
i
0/x

i
0, . . . , c

i
ni
/xini

)

is finitely satisfiable and hence satisfiable by some structureN . Each type ti(x
i
0, . . . , x

i
ni

) is realized

by cN0 , . . . , c
N
ni

. Moreover N is an elementary extension ofM since it is a model of ThLM
(M). �

The following condition on a type implies that it is realized in every model. We will phrase
this more generally for consistent sets of formulas in n fixed free variables, which are called partial
types.

Definition 4.1.5. Suppose that T is an L-theory and Σ(~x) is a set of L-formulas with at most
the free variables ~x = (x0, . . . , xn−1). A formula ϕ(~x) isolates Σ(~x) if

(a) ϕ(~x) is consistent with T and
(b) T |= ∀~x(ϕ(~x)→ σ(~x)) for all σ(~x) in Σ(~x).

Then Σ(~x) is called isolated with respect to T .

Note that for any type Σ(x) that is isolated by a formula ϕ(x) with respect to a complete theory
T , the sentence ∃xϕ(x) is in T and therefore Σ(x) is satisfied in every model of T . The following
converse to this statement shows that non-isolated types with respect to countable theories can
always be omitted.

Theorem 4.1.6. (Omitting types theorem) Suppose that T is a countable consistent theory in a
countable language L and Σ0(x0, . . . , xn0

), Σ1(x0, . . . , xn1
), . . . is a sequence of sets of formulas

that are consistent with T . If no Σi is isolated in T , then then T has a model that omits all Σi.

Proof. We first assume that there is only a single set Σ = Σ0 and moreover n0 = 0. We thus work
with a set Σ(x) of formulas in a free variable x and we can assume that it is consistent with T .

We choose a countable set C of new constants (that are not in L) and call the extended language
L(C). We extend T to a consistent complete theory T ∗ with the following properties.
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(a) T ∗ is a Henkin theory with respect to the set C of constants, i.e. for all L(C)-formulas, ψ(x)
there is a constant c ∈ C with (∃xψ(x)→ ψ(c)) ∈ T ∗.

(b) For all c ∈ C there is some σ(x) ∈ Σ(x) with ¬σ(c) ∈ T ∗.
We now construct an increasing sequence T = T0 ⊆ T1 ⊆ . . . of theories such that Tn+1 \ Tn is

finite for all n ∈ ω. Let 〈ci | i ∈ N〉 be an enumeration of C and 〈ψi(x) | i ∈ N〉 an enumeration
of all L(C)-formulas.

Now assume that T2i is already constructed and let c ∈ C be a variable that does not occur in
T2i ∪{ψi(x)}. Then the theory T2i+1 = T2i ∪{∃x ψi(x)→ ψi(c)} is consistent. Since we can form
the conjunction of the finitely many new formulas, the theory T2i+1 is equivalent to T ∪ {δ(ci,~c)}
for some L-formula δ(x, ȳ) and a tuple ~c in C that does not contain ci. Since the formula ∃~yδ(x, ~y)
does not isolate Σ(x), there is some σ(x) ∈ Σ(x) such that the formula (∃~yδ(x, ~y)) ∧ ¬σ(x) is
consistent with T . Hence the theory T2i+2 = T2i+1 ∪ {¬σ(ci)} is consistent.

Let T ∗ be a completion of the theory
⋃
n∈N Tn andM a model of T ∗. By Tarski’s test (Lemma

1.2.5), the set {cM | c ∈ C} is the domain of an elementary substructure ofM. Moreover Σ(x) is
omitted in M by the second property above.

The proof for the case of a set of formulas Σ0(x0, . . . , xn0) in n0 variables is virtually the same
as the previous proof. Finally, the proof for the general case in which we have sets Σi(x0, . . . , xni)
for all i ∈ N is very similar and only the order of the construction is changed. In each step, we
consider one of the sets Σi(x0, . . . , xni

) such that each is considered infinitely often, and do the
same as above in each step. �

Example 4.1.7. Sn(T ) is finite for the theory T = DLO in the language L = {<} and all n ∈ N.
For each ~x = (x0, . . . , xn−1), we consider all formulas of the form ϕ(~x) =

∧
i<j<n ϕi,j(xi, xj),

where ϕi,j(x, y) is of the form x < y, x = y or x > y.
We first claim that every type t(~x) = t(x0, . . . , xn−1) is generated by some formula of this form.

To see this, note that each formula in t(~x) is equivalent to a quantifier-free formula by quantifier
elimination for DLO. Thus it is equivalent to a formula

∨
i<m

∧
j<ni

ψi,j(~x) in disjunctive normal

form, where each formula ψi,j(~x) is basic (the formulas > and ⊥ are atomic by definition). Since
there are only finitely many such formulas, their conjunction ψ(~x) isolates t(~x). We can assume
that ψ(~x) is in disjunctive normal form. We fix a consistent conjunction χ(~x) in ψ(~x) and write
it equivalently (by re-ordering the components) as

∧
i<j<n, k<li,j

χki,j(xi, xj), where each formula

χki,j(xi, xj) is basic. Since χ(~x) implies ψ(~x), it isolates t(~x) as well (and is hence equivalent to

ψ(~x)). We now replace each sub-formula
∧
k<li,j

χki,j(xi, xj) by a stronger formula ϕi,j(xi, xj)

of the form xi < xj , xi = xj or xi > xj in t(~x) and thus χ(~x) is replaced by the formula
ϕ(~x) =

∧
i<j<n ϕi,j(xi, xj), which isolated t(~x).

We now claim that each such formula ϕ(~x) isolates an n-type. To see this, suppose that s(~x)
and t(~x) are distinct n-types that contain ϕ(~x). As we have shown, s(~x) and t(~x) are isolated by
formulas ψ(~x) =

∧
i<j<n ψi,j(xi, xj) and θ(~x) =

∧
i<j<n θi,j(xi, xj) as above. But since s(~x) and

t(~x) are distinct, these formulas are distinct. So one is different from and hence inconsistent with
ϕ(~x), contradicting the assumption.

It follows that there are exactly n! many n-types. This argument (reducing types to these
formulas) can also be shown by a back-and-forth construction.

Example 4.1.8. Sn(T ) is countably infinite for the theory T = ACFp in the language LR for
any characteristic p and all n ≥ 1.

We will write F0 = Q here to simplify the notation; so Fp is the (unique) prime structure for
ACFp. We first determine the 1-types. The set {f(x) 6= 0 | f ∈ Fp[X] \ Fp} generates a 1-type
t(x), which is called the trancendental 1-type, since for any field extensions Fp(x) and Fp(y) of Fp
with both x and y transcendental, there is an isomorphism h : Fp(x) → Fp(y) with h(x) = y and
hence x and y have the same type; it follows that this type is equal to t(~x).

Any other type t(x) is realized by an algebraic number x. Let g(X) ∈ Fp[X] be the minimal
polynomial of x, i.e. the unique polynomial of least degree with g(x) = 0 and leading coefficient
1. We claim that the formula g(x) = 0 isolates t(x). To see this, take any two fields Fp(x) and
Fp(y) with g(x) = g(y) = 0. Then Fp(x) ∼= Fp[X]/(g) ∼= Fp(y) by an isomorphism that sends x to
y (this calculation is done further above). Hence x and y have the same type.
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Now suppose that t(~x) = t(x0, . . . , xn−1) is an n-type. For all i < n, the 1-type of xi over
Fp(x0, . . . , xi−1) induced by t(~x) determines Fp(x0, . . . , xi) up to isomorphism. Except for the
transcendental 1-type, all 1-types over Fp(x0, . . . , xi−1) are determined by minimal polynomials
over Fp(x0, . . . , xi−1) as for Fp. Hence there are countably many such types.

The n-types in ACFp are completely described for all n > 1 in [Mar02, Example 4.1.14]. It is
shown there that there is a bijective correspondence between n-types over a subset A of the field
K and prime ideals in L[X0, . . . , Xn−1], where L is the subfield of K generated by A.

Problem 4.1.9. Determine Sn(T ) for the following theories and all n ≥ 1.

(a) The theory TRG of the random graph.
(b) The theory of Q-vector spaces.

The next observation states that every type with respect to a complete theory T is finitely
satisfiable in every model of T .

Observation 4.1.10. If M is a model of a complete L-theory T , then a set of L-formulas Σ(~x)
in the free variables ~x = (x0, . . . , xn−1) is consistent with T (i.e. it is satisfied in a model of T
with an assignment of the variables in ~x) if and only if it is finitely satisfiable in M.

Proof. We first assume that Σ(~x) is consistent with T . To show that Σ(~x) is finitely satis-
fiable in M , let ϕ0(~x),. . . , ϕn−1(~x) by formulas in t(~x). Since T is complete, we have that
∃x0, . . . , xn−1

∧
i<n ϕ(~x) ∈ T ; since M is a model of T this holds in M.

Conversely, assume that t(~x) is finitely satisfiable in M. Let L′ = L ∪ {c0, . . . , cn−1}, where
~c = (c0, . . . , cn−1) are new constants, and T ′ = T ∪ {ϕ(~c) | ϕ(~x) ∈ t(~x)}. Since t(~x) is finitely
satisfiable in M, for every finite subset T0 of T ′ there is a choice of values for ~c that defines an
expansion of M to an L′-structure that is a model of T0. By the compactness theorem T has a
model M′ and in this model, t(~x) is realized by ~cM

′
= (cM

′

0 , . . . , cM
′

n−1). �

Moreover, it is immediate that types are preserved by elementary embeddings.

Observation 4.1.11. Suppose that M = (M, . . . ) and N = (N, . . . ) are L-structures and
f : M→N is an elementary embedding. Then for all a0, . . . , an−1 ∈M , we have tpM(a0, . . . , an−1) =
tpN (f(a0), . . . , f(an−1)).

If a theory is categorical in some infinite cardinal, then it can be easily seen as follows that all
types are realized in every model.

Observation 4.1.12. If κ is an infinite cardinal, L a language of size at most κ and T a κ-
categorical L-theory, then any model M of size κ realizes all types.

Proof. Assume that some type t(~x) = t(x0, . . . , xn−1) is not realized inM. By Lemma 4.1.4, there
is an elementary extension N of M of size κ that realizes t(~x). but M and N are isomorphic by
κ-categoricity and hence have to realize the same types by Lemma 4.1.11. �

To study the types of an arbitrary complete L-theory T , we now introduce a topology on Sn(T )
for fixed n ≥ 1; with this topology Sn(T ) is called the space of n-types. The basic open sets in
Sn(T ) are defined as

[ϕ(~x)] = {t(~x) ∈ Sn(T ) | ϕ(~x) ∈ t(~x)}
for any L-formula ϕ(~x) and ~x = (x0, . . . , xn−1). This collection forms a base for a topology since
it is closed under finite intersections by the following lemma.

Lemma 4.1.13. Fix some n ≥ 1.

(a) [ϕ] ⊆ [ψ] ⇔ T |= ϕ→ ψ
(b) [ϕ] = [ψ] ⇔ T |= ϕ↔ ψ
(c) [⊥] = ∅
(d) [>] = Sn(T )
(e) [ϕ] ∩ [ψ] = [ϕ ∧ ψ]
(f) [ϕ] ∪ [ψ] = [ϕ ∨ ψ]
(g) Sn(T ) \ [ϕ] = [¬ϕ]
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Proof. These facts can all be checked very easily. For example, to show that [ϕ] ∪ [ψ] = [ϕ ∨ ψ],
assume that t(~s) is an n-type in [ϕ(~x)] ∪ [ψ(~x)]; we can assume that t(~x) ∈ [ϕ(~x)], so ϕ(~x) ∈ t(~x)
and hence ϕ(~x) ∨ ψ(~x) ∈ t(~x) since t(~x) is complete. If on the other hand t(~x) ∈ [ϕ(~x) ∨ ψ(~x)],
then ϕ(~x) ∈ t(~x) or ψ(~x) ∈ t(~x) since t(~x) is complete. �

Lemma 4.1.14. For any complete theory T and any n ∈ N, the type space Sn(T ) is a zero-
dimensional compact Hausdorff space.

Proof. A space is zero-dimensional (by definition) if it has a base that consists of sets that are
both open and closed. This holds for the base given above, since Sn(T ) \ [ϕ] = [¬ϕ] is open and
hence [ϕ] is closed. To see that Sn(T ) is Hausdorff, let s(~x) and t(~x) be distinct elements of Sn(T ).
Then there is a formula ϕ(~x) with ϕ(~x) ∈ s(~x) and¬ϕ(~x) ∈ t(~s). Now the basic open sets [ϕ] and
[¬ϕ] separate s(~x) and t(~x). It remains to show that Sn(T ) is compact. To see this, suppose that
{[ϕn(~x)] | n ∈ N} covers Sn(T ). If no finite subset covers Sn(T ), the the set {¬ϕn(~x) | n ∈ N} is
finitely satisfiable and hence it can be extended to a type t(~x). But this contradicts the fact that
t(~x) ∈ [ϕn(~x)] for some n ∈ N. �

If the language L is countable, then there are only countably many formulas and hence Sn(T )
has a countable base. In this case, Sn(T ) can be embedded into the Cantor space 2N of infinite
binary sequences. It is equipped with the metric d defined by d(x, y) = 2−n for all x 6= y, where
n is least with x(n) 6= y(n).

Problem 4.1.15. 7 Show that for any complete theory T in a countable language, the space Sn(T )
is homeomorphic to a subset of the Cantor space.

This can either be done by using an enumeration 〈ϕn(x0, . . . , xn−1) | n ∈ N〉 of all formulas
with free variables in x0, . . . , xn−1 to define a metric on Sn(T ), or using the fact that any zero-
dimensional compact Hausdorff space with a countable base is homeomorphic to a subset of the
Cantor space.

In some of the following proofs, we will need the notion of an embeddings between subsets of
structures that is elementary with respect to the whole structures.

Definition 4.1.16. Suppose that A0 and B0 are subsets of L-structures A = (A, . . . ) and B =
(B, . . . ). A function f : A0 → B0 is called elementary if for all formulas ϕ(~x) = ϕ(x0, . . . , xn−1)
and ~a = (a0, . . . , an−1) ∈ An, we have A |= ϕ(~a)⇐⇒ B |= ϕ(f(~a)).

We will also use the fact that elementary embeddings induce continuous maps between the type
spaces over subsets of structures.

Lemma 4.1.17. Suppose that A0 and B0 are subsets of L-structures A and B, f : A0 → B0 is an
elementary embedding and n ≥ 1. Then the function Sn(f) : SBn (B0)→ SAn (A0) defined by

Sn(f)(t(~x)) = {ϕ(~x,~a) | ~a ∈ A<ω0 , ϕ(~x, f(~a)) ∈ t(~x)}
for ~x = (x0, . . . , xn−1) is well-defined, continuous and surjective.

Proof. Since f is elementary, the set Sn(f)(t(~x)) is finitely satisfiable and hence satisfiable for
each n ≥ 1. Since t(~x) is complete, the same holds for Sn(f)(t(~x)) and thus Sn(f) is well-defined.
It is moreover continuous since the preimage of [ϕ(~x,~a)] is the set [ϕ(~x, f(~a)]. To see that it is
surjective, it is sufficient to show that the set Φ = {ϕ(~x, f(~a)) | ϕ(~x,~a) ∈ t(~x)} is finitely satisfiable
for every t(~x) ∈ SAn (A0). So let ϕi(~x,~a) ∈ t(~x) for i < k. Since A |= ∃~x

∧
i<k ϕi(~x,~a) and f is

elementary, we have B |= ∃~x
∧
i<k ϕi(~x, f(~a)). Hence

∧
i<k ϕi(~x, f(~a)) is satisfiable and thus Φ is

finitely satisfiable. �

Note that the map Sn(f) is the identity on Sn(T ) if A0 and B0 are empty. We will use the
following special cases of the previous lemma.

• If A = B, A0 ⊆ B0 and f = idA0
, then we write t(~x)�A0 = Sn(f)(t(~x)) and call this the

restriction of t(~x) to A0.
• If f : A0 → B0 is an isomorphism, then we write f = Sn(f)−1 : Sn(A0)→ Sn(B0) for the

isomorphism induced by f .

7This additional fact will not be used later.
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4.2. ℵ0-categorical theories, small theories and Vaught’s never two theorem. We will
characterize properties of complete theories by the number of types and properties of isolated
types.

Note that the isolated types are exactly the isolated points in the type space: if a type t(~x)
is isolated by a formula ϕ(~x), then it is the unique element of the basic open set [ϕ(~x)]. If on
the other hand t(~x) is an isolated point in Sn(T ) and thus {t(~x)} is open, let ϕ(~x) be a formula
with {t(~x)} = [ϕ(~x)]. If ϕ(~x) does not isolate t(~z), then there is a formula ψ(~x) ∈ t(~x) such that
T ∪ {ϕ(~x),¬ψ(~x)} is consistent, contradicting the assumption.

Lemma 4.2.1. The following conditions are equivalent for a complete theory T .

(a) Sn(T ) is finite for all n ≥ 1.
(b) Every n-type is isolated.
(c) There are only finitely many formulas of the form ϕ(~x) = ϕ(x0, . . . , xn−1) up to equivalence

in T , where ϕ(~x) and ψ(~x) are equivalent in T if T |= ∀~x ϕ(~x)↔ ψ(~x).

Proof. If Sn(T ) is finite, then every n-type is isolated since the space is Hausdorff. If conversely
every n-type is isolated, then Sn(T ) consists only of isolated points and hence it is finite by
compactness.

We now assume again that Sn(T ) is finite and let t0(~x), . . . , tk(~x) enumerate Sn(T ), where
~x = (x0, . . . , xn−1). If ψ(~x) and θ(~x) are not equivalent in T , then there is an n-type t(~x) that
contains ψ(~x) and not θ(~x) or conversely. Hence any two formulas are equivalent if and only if
they are contained in the same types, and thus there are only finitely many equivalence classes.
If on the other hand there are only k many formulas with n free variables up to equivalence in T ,
then there are at most 2k many n-types. �

Definition 4.2.2. Suppose that κ is an infinite cardinal and T is an L-theory. A model M =
(M, . . . ) of T is called κ-saturated if for every subset A of M of size strictly less than κ, every 1-type
in SM1 (A) is realized in M. Moreover M = (M, . . . ) is called saturated if it is |M |-saturated.

Lemma 4.2.3. Suppose that T is a complete theory and κ is an infinite cardinal. Then there is
at most one κ-saturated model of size κ up to isomorphism.

Proof. Suppose that M = (M, . . . ) and N = (N, . . . ) are κ-saturated models of T of size κ.
Suppose that 〈ai | i < κ〉 and 〈bi | i < κ〉 enumerate M and N . We construct an increasing
sequence 〈fj | j ≤ κ〉 of elementary functions fj : Aj → Bj between finite subsets of M and N
(note that for if ~c is an enumeration of Aj , this means that tpM(~c) = tpN (f(~c))). Let f0 = A0 =
B0 = ∅ and let fj =

⋃
i<j fi, Aj =

⋃
i<j Ai and Bj =

⋃
i<j Bi for limits j ≤ κ. Now suppose

that fj : Aj → Bj is already constructed. To extend the domain of fj to Aj ∪ {a}, let t(x) =
tpM(aj/Aj). Since N is κ-saturated and |Bj | < κ, there is some b ∈ N with tpM(b/Bj) = f(t(x)).
Then the extension f ′j : Aj ∪ {aj} → Bj ∪ {b} of fj that is defined by f ′j(aj) = b is elementary.

To extend the range of f ′j to Bj ∪ {bj , b}, let t(x) = tpM(bj/Bj ∪ {b}). Since M is κ-saturated

and |Aj ∪ {aj}| < κ, there is some a ∈ N with tpM(a/Aj ∪ {a}) = f−1
j (t(x)). Then the extension

fj+1 : Aj ∪ {aj , a} → Bj ∪ {b, bj} of f ′j that is defined by fj+1(a) = bj is elementary. Finally let
Aj+1 = Aj ∪ {aj , a} and Bj+1 = Bj ∪ {b, bj}. Then fκ is an isomorphism betweenM and N . �

Theorem 4.2.4 (Engeler, Ryll-Nardzewski, Svenonius). The following conditions are equivalent
for a complete theory T with infinite models.

(a) Sn(T ) is finite for all n ≥ 1.
(b) Every countable model of T is ω-saturated.
(c) T is ℵ0-categorical.

Proof. We first assume that Sn(T ) is finite for all n ≥ 1. By Lemma 4.2.1, there are k many
L-formulas of the form ϕ(x0, . . . , xn) up to equivalence modulo T . To see that any countable
modelM = (M, . . . ) of T is ω-saturated, suppose that A = {a0, . . . , an−1} is a subset of M . Then
there are at most k many LA-formulas of the form ψ(x) up to equivalence modulo ThLA

(M).
It follows from Lemma 4.2.1 that every 1-type t(x) with respect to ThLA

(M) is isolated by an
LA-formula ψ(x). Then ∃xψ(x) follows from ThLA

(M) and hence t(x) is realized in M.
If every countable model of T is ℵ0-saturated, then T is ℵ0-categorical by Lemma 4.2.3.
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Now suppose that T is ℵ0-categorical. If Sn(T ) is infinite, then is must contain a non-isolated
type by compactness of Sn(T ). By the omitting types theorem (Theorem 4.1.6), there is a count-
able model M of T in which t(x) is not realized. But there is also a countable model N in which
t(x) is realized, so T cannot be ℵ0-categorical. �

Definition 4.2.5. (a) If M is an L-structure, let Aut(M) denote the group of automorphisms
of M.

(b) If A is any set, a subgroup G of the group Sym(A) of permutations of A is called oligomorphic
of for every n ∈ N, there are only finitely many orbits of the action of G on An.

Theorem 4.2.6. The following conditions are equivalent for any countable complete theory T
with infinite models.

(a) T is ℵ0-categorical.
(b) If A is any countable model of T , then Aut(A) is oligomorphic.
(c) T has a countable model A such that Aut(A) is oligomorphic.
(d) Some countable model A of T realizes only finitely many n-types for each n ∈ N.

Proof. First assume that (a) holds. Then every countable model A of T is ω-saturated by the
Theorem of Engeler, Ryll-Nardzewski and Svenonius 4.2.4. Now the proof of Lemma 4.2.3 shows

that for any two tuples ~a = (a0, . . . , an−1) and ~b = (b0, . . . , bn−1) of the same type, there is an
automorphism h : A→ A with h(ai) = bi for all i < n. Since there are only finitely many n-types
by Theorem 4.2.4, Aut(A) isoligomorphic.

The implication from (b) to (c) is clear. The implication from (c) to (d) is also clear because
automorphisms preserve types.

Now assume that (d) holds and t0(~x), . . . , tk(~x) are all n-types realized in M, where ~x =
(x0, . . . , xn−1). We claim that there are no more n-types (with respect to T ). This implies (a) by
the Theorem of Engeler, Ryll-Nardzewski and Svenonius 4.2.4. Towards a contradiction, suppose
that t(~x) is an n-type that is not realized in M. Then there is a formula ϕ(~x) ∈ t(~x) \

⋃
i≤k ti(~x)

(let ψi(~x) ∈ t(~x) \ ti(~x) and ϕ(~x) =
∧
i≤k ψi(~x)). Then ∃~x ϕ(~x) is in t(~x) and hence in T . So ϕ(~x)

is satisfiable in M, but this contradicts the fact that it is not in any ti(~x). �

Definition 4.2.7. A theory T is small if Sn(T ) is countable for all n ≥ 1.

For example Sn(ACFp) is countably infinite for all n ≥ 1 and all primes p or p = 0. The follow-
ing equivalence implies that ACFp has a countable ω-saturated model. This is the algebraically
closed field with transcendence degree ω.

Theorem 4.2.8. A countable complete theory T with infinite models is small if and only if it has
a countable ω-saturated model.

Proof. If all types are realized in a countable model, then there are only countably many types.
Conversely, assume that Sn(T ) is countable for all n ≥ 1. We construct an elementary chain
〈Mi | i ∈ N〉 where Mi = (Mi, . . . ), i.e. Mi ≺ Mj for all i < j. It follows from Tarski’s
Test (Lemma 1.2.5) that the union of these models is an elementary extension of all of them
(this is called Tarski’s chain lemma). Let M0 be any countable model of T . If Mi is already
constructed, there is a countable elementary extensionM′i ofMi such that all types with respect
to ThMi

(Mi) are realized in M′i. Since there are only countably many types over finite subsets
of Mi, let Mi+1 ≺ M′i be an elementary substructure containing Mi such that all n-types over
finite subsets of Mi (i.e. types in Sn(ThLA

(Mi)) for finite subsets A of M) are realized in Mi+1

for all n ≥ 1 by the Löwenheim-Skolem theorem. Finally, the union M of the structures Mi for
i ∈ N is ω-saturated. �

We have now given equivalent formulations of the statements that every countable model of a
given theory is saturated and of the existence of a countable saturated model. Recall that one of
our main questions is the number of models of size κ of a given complete theory for all infinite
cardinals κ. The next result shows that it is impossible to have exactly two countable models up
to isomorphism.

Theorem 4.2.9 (Vaught). A countable complete theory T cannot have exactly two countable
models up to isomorphism.
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Proof. If T is not small, then Sn(T ) is uncountable for some n ≥ 1. Since every type is realized
in some countable model of T , there are uncountably many non-isomorphic countable models of
T . We can thus assume that T is small and not ℵ0-categorical. Then there is a non-isolated type
t(~x) by Lemma 4.2.1 and the theorem of Engeler, Ryll-Nardzewski and Svenonius 4.2.4. By the
omitting types theorem, t(~x) is omitted in some countable model M of T . Moreover T has a
countable ω-saturated model N of T in which t(~x) is realized by some tuple ~a = (a0, . . . , ak−1).
Let A = {a0, . . . , ak−1}. Since T is not ℵ0-categorical, Sn(T ) is infinite for some n ≥ 1. Moreover
we have that each type in Sn(T ) extends to a type in Sn(ThLA

(N )) by the argument in the proof
of Theorem 4.1.4. Hence ThLA

(N ) is not ℵ0-categorical and hence there is a countable model K
of ThLA

(N ) that is not ω-saturated. Moreover the models M, N and K are different. �

However, it is not too hard to find countable complete theories with exactly n countable models
up to isomorphism – see [TZ12, Exercise 4.3.5].

Problem 4.2.10. Show that for every n > 2, there is a countable complete theory with exactly n
countable models up to isomorphism.

What about uncountable models? We will hopefully get to this later...

4.3. Prime models. How can we determine if a given theory T has a prime model, i.e. one that
can be elementarily embedded into every other model of T? A prime model is by definition the
smallest possible model of a theory. For example, the algebraic closures of Q and Fp are prime
models by quantifier elimination, while Q and Fp are prime structures.

We first want to derive properties of prime models – the following is a necessary condition. We
will then consider criteria how to determine if a prime model exists. An example of a countable
complete theory with quantifier elimination, but no prime model can be found in [TZ12, p. 60].

Definition 4.3.1. A model M = (M, . . . ) of a theory T is atomic if every type tpM(~a) realized
in M is isolated (in Sn(T )).

Theorem 4.3.2. Suppose that T is a theory in a countable language L with infinite models. Then
a model M = (M, . . . ) of T is prime if and only if it is countable and atomic.

Proof. Any prime model of T is countable, since T has countable models by the Löwenheim-
Skolem theorem. Since all non-isolated types can be omitted by the omitting types theorem, only
isolated types can be realized in prime models.

Now assume that M = (M, . . . ) is a countable atomic model of T and N = (N, . . . ) is any
countable model of T . We construct a sequence 〈fn | n ∈ N〉 of elementary functions fn : An → Bn
between finite subsets of M and N . The map f0 with empty domain is elementary with respect
to M and N , since both are models of T . It is sufficient to show that for every elementary
function f : A→ B between finite subsets A and B of M and N and every a ∈M , there is some
b ∈ N such that the extension of f that maps a to b is elementary. To this end, suppose that
A = {a0, . . . , ak−1} and ~a = (a0, . . . , ak−1). Since M is atomic, there is a formula ϕ(x, ~x) that
isolates tpM(a,~a). Then ϕ(x,~a) isolates the type t(x) = tpM(a/A). Since f : A→ B is elementary,
the formula ϕ(x, f(a0), . . . , f(ak−1)) isolates f(t(x)). Hence ∃x ϕ(x, f(a0), . . . , f(ak−1)) holds in
N , witnessed by some b ∈ N with type f(t(x)). Thus the extension of f that sends a to b is
elementary. �

If prime models exists, then they are unique. This can be easily shown by a variation of the
previous proof.

Lemma 4.3.3. All prime models of a theory T in a countable language with infinite models are
isomorphic.

Proof. As in the proof of Theorem 4.3.2, we can construct a sequence of elementary maps be-
tween finite subsets of two prime models, but extend them on both sides in each step to get an
isomorphism. �

We now want to characterize the existence of prime models by a property of the type spaces.
To state this criterion, recall that a subset X of a topological space S is dense if and only if
X ∩ U 6= ∅ for every nonempty open subset U of S.
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Lemma 4.3.4. A theory T in a countable language with infinite models has a prime model if and
only if for every n ≥ 1, the isolated n-types are dense in Sn(T ).

Proof. Suppose that M = (M, . . . ) is a prime model of T ; then M is infinite. Moreover, suppose
that ϕ(~x) = ϕ(x0, . . . , xn−1) is an L-formula that is consistent with T . Then the sentence ∃~xϕ(~x)
is in T and hence holds inM, witnessed by some ~a = (a0, . . . , an−1) ∈Mn. Then tpM(~a) ∈ [ϕ(~x)]
and this type is isolated by Theorem 4.3.2. So the isolated n-types are dense.

Now suppose that for each n ≥ 1, the isolated n-types are dense in Sn(T ). It is sufficient to find
a countable modelM of T in which only isolated types are realized. By the omitting types theorem
4.1.6, it suffices to show that for each n ≥ 1, the set Σn(~xn) = {¬ϕ(~xn) | ϕ(~xn) isolates an n-type}
is either inconsistent, or consistent but not isolated (then all Σn(~xn) can be simultaneously omitted
in a countable model of T ). Towards a contradiction, suppose that for some n ≥ 1, ψ(~xn) is a
formula that is consistent with T and isolates Σn(~xn). Then T |= ψ(~xn)→ ¬ϕ(~xn) for all formulas
ϕ(~xn) that isolate a type. Hence no isolated n-type is in [ψ(~xn)] for any n ≥ 1. But this contradicts
the assumption that the isolated n-types are dense. �

Here is another sufficient condition for the existence of prime models. Its proof idea will show
up again later...

Lemma 4.3.5. If T is a complete theory and Sn(T ) is countable, then the isolated n-types are
dense. In particular, any small theory T in a countable language with infinite models has a prime
model.

Proof. If the isolated n-types are not dense, then there is a formula ϕ(~x) such that [ϕ(~x)] does not
contain any isolated type. Using this fact, we can inductively construct a ’tree’ 〈ϕs(~x) | s ∈ 2<ω〉
of formulas consistent with T such that ϕ0(~x) = ϕ(~x) and for each s ∈ 2<ω, there is a formula
ψ(~x) with ϕsa0(~x) = ϕs(~x)∧ψ(~x) and ϕsa1 = ϕs(~x)∧¬ψ(~x). Such a formula ψ(~x) exists because
ϕs(~x) does not isolate a type (because [ϕ(~x)] does not contain any isolated types). We now obtain
2ω distinct n-types, since for every z ∈ 2ω the set T ∪ {ϕz�k(~x) | k ∈ N} is finitely satisfiable and
can hence be extended to a type tz(~x). The second claim now follows from Lemma 4.3.4. �

4.4. Algebraic closure in saturated structures. The following modified notion of homogene-
ity is useful because it also makes sense for structures that are not homogeneous. For instance,
the linear order (Q ∩ [0, 1), <) is ω-homogeneous but not homogeneous.

Definition 4.4.1. A structure M = (M, . . . ) is κ-homogeneous if for every elementary map f
defined on a subset A of M with |A| < κ and for any a ∈ M , there is some b ∈ M such that
g = f ∪ {(a, b)} is elementary.

Note that g = f ∪{(a, b)} is elementary if and only if tpM(b/B) = f(tpM(a/A)) – simply check
that equality of types means that the truth of formulas is preserved (we could say that b realizes
the type f(tpM(a/A)) over B – this makes sense as it is a type in the language LB).

An interesting fact about this property is that it holds for all κ-saturated structures.

Lemma 4.4.2. Every κ-saturated structure is κ-homogeneous.

Proof. Suppose that f : A→ B is an elementary map between subsets of a κ-saturated structure
M = (M, . . . ) of size strictly less than κ and a ∈M . Since M is κ-saturated, then f(tpM(a/A))
is an n-type over B by the definition of the map f = Sn(f)−1 : SMn (A) → SMn (B) in Lemma
4.1.17. By κ-saturation, it is realized by some b ∈M and then g = f ∪ {(a, b)} is elementary. �

The next problem shows that this is not a necessary condition.

Problem 4.4.3. Show that every prime model is ω-homogeneous.

If a structure is ω-homogeneous, then we have the following test to determine whether it is
ℵ0-saturated.

Problem 4.4.4. Show that any ω-homogeneous model M of a complete theory T that realizes
every n-type with respect to T for all n ≥ 1 is ℵ0-saturated.

In the next definition, we have a version of the algebraic closure in a structureM that is defined
only from the action of Aut(M).
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Definition 4.4.5. Suppose that A is a subset of a model M = (M, . . . ) of a theory T .

(a) A conjugate of x ∈ M over A is an element g(x) ∈ M , where g is an automorphism of M
that fixes A pointwise.

(b) The ∗-algebraic closure acl∗(A) = acl∗M(A) is defined as the set of elements x ∈M with only
finitely many conjugates over A. 8

Since automorphisms ofM that fix A pointwise preserve the truth of formulas with parameters
in A, we have acl(A) ⊆ acl∗(A). We will show that these two notions are the same in saturated
structures. This will use the next lemma.

Lemma 4.4.6. If κ is an infinite cardinal andM is a saturated model of size κ, then two n-tuples
are in the same Aut(M)-orbit if and only if they have the same type.

Proof. Since automorphisms preserve types, two tuples in the same Aut(M)-orbit have the same

type. Conversely, if two tuples ~a = (a0, . . . , an−1) and ~b = (b0, . . . , bn−1) have the same type, then
the function f sending ai to bi can be extended to an automorphism. Since M has size κ and is
κ-homogeneous by Lemma 4.4.2, it is easy to construct such an isomorphism as a union of partial
isomorphisms. �

We first note an interesting consequence for definable subsets of ℵ0-categorical structures.

Lemma 4.4.7. Given an ℵ0-categorical structure M = (M, . . . ), the definable subsets of Mn are
precisely the Aut(M)-invariant subsets of Mn, i.e. unions of Aut(M)-orbits on Mn.

Proof. It is clear that a definable subset of Mn is Aut(M)-invariant. For the converse, note that
M is ω-saturated by the theorem of Engeler, Ryll-Nardzewski and Svenonius (Theorem 4.2.4).
Since all types are isolated, Lemma 4.4.6 implies that each Aut(M)-orbit is definable. Since there
are only finitely many orbits by Theorem 4.2.6, any union of orbits is also definable. �

Theorem 4.4.8. If M = (M, . . . ) is a saturated structure of size κ and A is a subset of M with
|A| < κ, the following conditions are equivalent.

(a) b ∈ acl(A)
(b) b ∈ acl∗(A)
(c) tpM(b/A) has only finitely many realizations in M.

Proof. (a) implies (b), since automorphisms preserve the truth of formulas. Moreover, the impli-
cation from (b) to (c) holds since any two elements with the same type are in the same AutA(M)-
orbit, where AutA(M) denotes the group of g ∈ Aut(M) fixing A pointwise, by Lemma 4.4.6
applied to the action of AutA(M) on M \A. We now assume that (c) holds. Suppose that there
are exactly n realizations of tpM(b/A) in M and let ~x = (x0, . . . , xn) (the point is that there are
n+ 1 many free variables). By our assumption, the set

Σ(~x) = {ϕ(xi) | ϕ(x) ∈ tpM(b/A), i ≤ n} ∪ {
∧

i<j≤n

xi 6= xj}

is not realized inM. SinceM is κ-saturated, some finite subset of Σ(~x) is not satisfied inM. So
there are formulas ϕ0(x), . . . , ϕk(x) ∈ tpM(b/A) with M |= (

∧
i≤n

∧
j≤k ϕj(xi)) →

∨
i<j≤n xi =

xj . Hence the formula
∧
j≤k ϕj(x) defines a set of size at most n that contains b. �

Question 4.4.9. Is Theorem 4.4.8 also true for sets A of size κ?

We claim that in any ℵ0-categorical theory, there are only finitely many n-types over any finite
set for each n ≥ 1. This follows immediately from the theorem of Engeler, Ryll-Nardzewski and
Svenonius (Theorem 4.2.4, since ω-saturation is equivalent for a structure M = (M, . . . ) as an
L-structure or an LA-structure, if A is a finite subset of M (note that this can fail for infinite
subsets). Therefore, we have the following useful result about algebraic closures.

Corollary 4.4.10. In ℵ0-categorical structures, algebraic closures of finite sets are finite.

8This is a non-standard notation – the algebraic closure is usually only considered in saturated structures and
the two notions are equal there.
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This holds since there are only finitely many 1-types over a finite set A, and each 1-type has
finitely many realizations in acl(A).

In particular, any ℵ0-categorical structure is locally finite, i.e. any finitely generated substruc-
ture is finite. This holds because the elements of the substructure 〈A〉M of such a structure
M = (M, . . . ) generated by a finite subset A of M are exactly the elements tM(~a) for some
~a ∈ A<ω. But tM(~a) ∈ acl(A), since {tM(~a)} is definable from ~a.

We now study a strengthening of the amalgamation property, which states that structures B
and C with a common substructure A can be amalgamated in such a way that their intersection
is A.

Definition 4.4.11. A class K of L-structures has the strong amalgamation property if for all
embeddings f0 : A → B and g0 : A → C between structures in K, there are embeddings g0 : B → D
and g1 : C → D into some D ∈ K with g0 ◦ f0 = g1 ◦ f1 and ran(g0) ∩ ran(g1) = ran(g0 ◦ f0).

We say that algebraic closure in a structure M = (M, . . . ) is trivial if acl(A) = A for every
subset A of M – since every element of acl(A) is is in acl(A′) for a finite subset A′ of A, it is
sufficient to show this only for finite sets. To show that the strong amalgamation property is
equivalent to trivial algebraic closure in the Fraisse limit, we need the following lemma.

Lemma 4.4.12 (Neumann). Suppose that a group G acting on a set X has only infinite orbits,
and let A and B be finite subsets of X. There there is some g ∈ G with gA ∩B = ∅.
Proof. We prove this by induction on |A|. It is clear for |A| = 0. We now assume that the
statement of the lemma fails for a nonempty set A, but holds for all sets A′ with |A′| < |A|.
Claim 4.4.13. For any subset C of X with |C| ≤ |A|, only finitely many translates of A contain
C.

Proof. This is proved by induction on |A| − |C|. It is clearly true for sets C with |A| − |C| = 0.
Now assume that |C| < |A| and the claim holds for all C ′ with |C ′| > |C|. By the induction
hypothesis for the lemma, we can assume (by translating C by some g ∈ G) that that B ∩C = ∅.
Moreover, by the induction hypothesis for the claim, for each b ∈ B only finitely many translates
of A contain C ∪ {b}. So only finitely many translates of A contain C and meet B. Since we are
assuming that the lemma fails for A, every translate of A meets B. So the claim holds for C. �

By letting C = ∅, the claim shows that A has only finitely many translates. But this contradicts
the assumption that G has only infinite orbits. �

In the next proof, we will work with the following subgroups of automorphism groups: We
define AutA(M) for any structure M = (M, . . . ) and any subset A of M as the group of all
g ∈ Aut(M) that fixes A pointwise, i.e. the pointwise stabilizer of A.

Lemma 4.4.14. Suppose that L is a countable language and M is a homogeneous ω-categorical
L-structure. Then the algebraic closure in M is trivial if and only if the skeleton of M has the
strong amalgamation property.

Proof. First suppose that the skeleton K of M has the strong amalgamation property. Let A be
a finite subset of M and b ∈ M \ A. Since we have to show that b is in an infinite AutA(M)-
orbit, it is sufficient to show that for every n ∈ N there are at least n elements in this orbit.
Let B be the substructure A ∪ {b} of M . We can apply strong amalgamation (n − 1) times to
obtain a substructure C of M that consists of n distinct copies of B amalgamated over A. So
C = A ∪ {b0, . . . , bn−1}. By homogeneity we can assume that b0 = b. For any i < j < n, the
isomorphism f : A ∪ {bi} → A ∪ {bj} fixing A pointwise and mapping bi to bj extends to an
automorphism of M by homogeneity. Hence bi and bj are in the same AutA(M)-orbit.

Conversely, suppose that the algebraic closure is trivial in M. Take embeddings f0 : A → B
and f1 : A→ C; we can assume that f0 is the identity. By homogeneity, there is an automorphism
h of M extending f1. Then h−1(C) ⊇ A. We now apply Neumann’s lemma (Lemma 4.4.12)
to AutA(M) acting on M \ A. Then (k ◦ h−1)(C) ∩ B = A for some k ∈ AutA(M). Now
D = (k ◦h−1)(C)∪B is a strong amalgamation of f0 and f1 via the inclusion g0 : B → D and the
embedding g1 : C → D with g1 = (k ◦ h−1)�C. �

Problem 4.4.15. Find concrete finitely generated fields witnessing failures of strong amalgama-
tion for any characteristic.
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4.5. Quantifier elimination and homogeneity. We now connect the purely syntactical con-
dition of quantifier elimination with homogeneity, a property of structures. For the following
statements, recall that a relational language is one without constant and function symbols.

• If the language is finite and relational, then quantifier elimination is equivalent to ho-
mogeneity of countable models (Theorem 4.5.2). Moreover, this implies ℵ0-categoricity
(Lemma 4.5.1).

• If the theory is ℵ0-categorical, then the same equivalence holds without assumptions on
the language (Theorem 4.5.4).

Lemma 4.5.1. If T is a complete theory in a finite relational language with infinite models and
quantifier elimination, then T is ℵ0-categorical.

Proof. There are only finitely many quantifier-free formulas in the free variables x0, . . . , xn−1 up
to equivalence modulo T (consider formulas in disjunctive normal form). Hence Sn(T ) is finite for
all n ≥ 1. Thus the claim follows from the theorem of Engeler, Ryll-Nardzewski and Svenonius
(Theorem 4.2.4). �

Theorem 4.5.2. If T is a complete theory in a finite relational language and M is an infinite
model of T , then the following conditions are equivalent.

(a) T has quantifier elimination.
(b) The domain of any isomorphism between finite substructures of M can be extended by one

further element (ifM is countable, this implies that there is an extension to an automorphism
of M and hence it is equivalent to homogeneity).

(c) Any isomorphism between finite substructures of M is elementary.

Proof. Assume (a). Then any isomorphism between finite substructures ofM is elementary. Since
T is ℵ0-categorical by Lemma 4.5.1, any countable model of T is ω-saturated by the Theorem of
Engeler, Ryll-Nardzewski and Svenonius 4.2.4. Since any model of T has a countable elementary
submodel, it follows that every model of T is ω-saturated. Hence any model of T is also ω-
homogeneous by Lemma 4.4.2 and condition (b) follows.

Now assume (b). Clearly any isomorphism f : A → B between finite substructures of M
preserves the truth of quantifier-free formulas. We prove (c) by induction on formulas and will only
do the existential case, since the other cases are easier. To this end, assume that any isomorphism
f : A → B between finite substructures of M preserves the truth of a formula ϕ(x, ~y) and that
∃x ϕ(x,~a) holds in M for a tuple ~a = (a0, . . . , an−1). Pick a witness a ∈ M and apply (b) to
obtain some b ∈ N such that g = f ∪ {(a, b)} is an isomorphism. Then ∃x ϕ(x, f(~a)) holds in M
by the induction hypothesis for g.

We finally assume (c). Let

tpMat (~a) = {θ(~x) | M |= θ(~a) and θ is basic}
denote the atomic type of any ~a = (a0, . . . , an−1) ∈ Mn. Moreover, let Σ0(~x), . . . , Σk−1(~x)
list the atomic types tpMat (~a) of all ~a = (a0, . . . , an−1) ∈ Mn with M |= ϕ(~a). Let further
θi(~x) =

∧
ψ(~x)∈Σi(~x) ψ(~x) for all i < k. By (c), ∀~x(ϕ(~x)↔

∨
i<k θi(~x)) holds in M. Since the sets

Σi(~x) depend only on T (and not on M), this holds in any model of T and thus (a) follows. �

For example, this can be applied to the Fraisse limit of any amalgamation class in a finite
relational language. Recall that this is homogeneous, so condition (b) holds and therefore its
theory has quantifier elimination:

Corollary 4.5.3. If M is the Fraisse limit of an amalgamation class of finite L-structures in a
finite relational language L, then Th(M) has quantifier elimination.

We obtain the following characterization of quantifier elimination for ℵ0-categorical structures.

Lemma 4.5.4. The theory T of an ℵ0-categorical L-structure M has quantifier elimination if
and only if M is homogeneous.

Proof. Assume that M is ℵ0-categorical and f : A → B is an isomorphism between finitely gen-
erated substructures of M. By Corollary 4.4.10, A and B are finite. Let ~a = (a0, . . . , an−1) and
~b = (b0, . . . , bn−1) enumerate A and B. Then ~a and ~b satisfy the same quantifier-free formulas
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in M. Thus tpM(~a) = tpM(~b) by quantifier elimination. Finally, there is an isomorphism of M
extending f by Lemma 4.4.8.

For the reverse direction, we claim each type in T is determined by its quantifier-free part.
By Problem 23, this shows that T has quantifier elimination. To prove the claim, suppose that

~a = (a0, . . . , an−1) and ~b = (b0, . . . , bn−1) are tuples with the same atomic types as defined in the
proof of Theorem 4.5.2. Then there is an isomorphism f between the substructures generated by
them (this is always the case – it does not use the assumption that the theory is ℵ0-categorical).

Since M is homogeneous, there is an automorphism of M that extends f . Hence ~a and ~b have
the same type. �

4.6. More on saturated structures. Saturated models do not necessarily exist for all complete
theories. But with additional set-theoretic assumptions they do: for any infinite cardinal κ with
κ<κ = κ one can easily construct a saturated model as the union of a chain of models of length
κ, where each model is strictly smaller than κ and all types over subsets are realized on the way.
Moreover, assuming a version of ZFC with global choice such as Gödel-Bernays class theory GBC,
one can construct a fully saturated model of proper class size in the same way – this is called a
monster model (see [TZ12, Theorem 6.1.7]).

However, for many interesting theories saturated models always exists, for instance for ACFp.

Lemma 4.6.1. An algebraically closed field K is saturated if and only if its transcendence degree
is infinite.

Proof. Suppose that A is a finite subset of K and R is the subring generated by A. Let t(x) be
the 1-type generated by the set {f(x) 6= 0 | 0 6= f ∈ R[X]}, which says that x is transcendental
over R. If K is ω-saturated, then t(x) is realized in K and hence A cannot be a transcendence
base for K, so K has infinite transcendence degree.

Conversely, suppose that K has infinite transcendence degree and A is a subset of K of size
strictly less than |K|. Moreover, suppose that t(x) is a 1-type over A. Let further R be the subring
of K generated by A and L its quotient field in K. If t(x) is the trancendental type over L, i.e.
(f(x) = 0) /∈ t(x) for every nonzero polynomial f ∈ L[X], then it is realized in K. Otherwise let
M be an elementary extension of K in which t(x) is realized by some a ∈ M and let f ∈ L[X]
be the minimal polynomial of a. As we have argued in Example 4.1.8, the minimal polynomial
f completely determines the type of a over L. Additionally, the type is absolute between fields
containing L(a) by quantifier elimination. Since K is algebraically closed, f(x) has a zero in K
and this realizes t(x). �

We showed that acl(A) = acl∗(A) for subsets A strictly smaller than κ of any saturated structure
of size κ. The next problem shows that saturation is not a necessary condition.

Problem 4.6.2. Show that aclK(A) = acl∗K(A) for arbitrary subsets A of any algebraically closed
field K.

While a prime model is the least model of a theory with respect to elementary embeddability,
any saturated model is maximal for models of at most its size. If λ is an infinite cardinal, a model
M of T is called λ-universal if every model of T of size strictly smaller than λ is elementarily
embeddable into M.

Lemma 4.6.3. If T is a complete theory and κ is an infinite cardinal, then every κ-saturated
model N = (N, . . . ) of T is κ+-universal.

Proof. Suppose thatM = (M, . . . ) is a model of T of size at most κ. Moreover, fix an enumeration
〈ai | i < κ〉 of N and let Aj = {ai | i < j} for all j ≤ κ. We now construct a sequence 〈fj | j ≤ κ〉
of elementary embeddings fj : Aj → Bj from M to N , where Bj is a subset of N . Let f0 be the
empty function and let fj =

⋃
i<j fi for limits j ≤ κ. If fj is already defined, by κ-homogeneity

of N there is some b ∈ N such that fj+1 = fj ∪ {(aj , b)} is elementary. �

The next result proves the converse implication.

Lemma 4.6.4. If T is a complete theory of size at most κ, where κ is an infinite cardinal, then
every κ-homogeneous κ+-universal model N = (N, . . . ) of T is κ-saturated.
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Proof. Suppose that A is a subset of N with |A| < κ and t(x) ∈ SN1 (A). By the Löwenheim-
Skolem theorem, there is an infinite elementary substructure M = (M, . . . ) of N containing A
with |M | ≤ κ. Since t(x) ∈ SN1 (A), there is an elementary extension M′ = (M ′, . . . ) of M of the
same size as M in which t(x) is realized by some a ∈ M ′. Since N is κ+-universal, there is an
elementary embedding f : M′ → N . Then g = f−1 : f(A) → A is elementary with respect to N
andM′. Since N is κ+-homogeneous, there is some b ∈ N such that g∪{(f(a), b)} is elementary.
Then b realizes t(x) in N . �
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