Models of Set Theory I – Summer 2017

Prof. Peter Koepke, Dr. Philipp Lücke – Problem Sheet 8

Problem 29 [4 points] Let α be an ordinal, let $\mathbb{P} \in M$ be a forcing notion, and let M be a countable ground model. We call \dot{x} a *nice* \mathbb{P} -*name* for a subset of α in case \dot{x} is of the form

$$\dot{x} = \bigcup \{ \{ \check{\beta} \} \times A_{\beta} \mid \beta \in \alpha \},\$$

where each A_{β} is an antichain of \mathbb{P} .

- Show that if $\alpha \in \text{Ord}^M$, and $1 \Vdash \dot{x} \subseteq \check{\alpha}$, then there is a nice name \dot{y} such that $1 \Vdash \dot{x} = \dot{y}$.
- Let \mathbb{P} be Cohen forcing, and let κ be an infinite cardinal in M. Calculate the number of nice \mathbb{P} -names for subsets of κ in M. Use this to argue that $(2^{\kappa})^{M[G]} = (2^{\kappa})^{M}$.

Problem 30 [4 points] Assume that $r: \omega \to 2$ is a Cohen real over the countable ground model M.

• Show that both a and b are Cohen reals over M, where

$$a = \{(n,i) \mid (2n,i) \in r\}, b = \{(n,i) \mid (2n+1,i) \in r\}.$$

• Show that if G is generic for Cohen forcing over M, then in M[G], there are 2^{\aleph_0} -many pairwise different Cohen reals over M.

Problem 31 [3 points] A subset X of \mathbb{R} has strong measure zero if for any sequence $\langle n_i \mid i < \omega \rangle$ of natural numbers, it can be covered by a sequence of intervals $\langle I_i \mid i < \omega \rangle$ such that I_i has length at most $\frac{1}{n_i}$ for every $i < \omega$. Let M be a countable ground model. Show that the ground model reals have strong measure zero in any generic extension for Cohen forcing.

Problem 32 [9 points] Let B be a complete Boolean algebra. We shall define a *Boolean-valued model* V^B inductively as follows.

- 1. $V_0^B = \emptyset$.
- 2. $V_{\alpha+1}^B$ is the set of all *B*-names \dot{x} of the form $\dot{x} = \{(\dot{y}_i, b_i) \mid i \in I\}$ where *I* is any set, and each \dot{y}_i is in V_{α}^B .
- 3. If α is a limit ordinal, or $\alpha = \text{Ord}$, then $V_{\alpha}^{B} = \bigcup_{\beta \in \alpha} V_{\beta}^{B}$.

4.
$$V^B = V^B_{\text{Ord}}$$

We define the auxiliary notion of Boolean implication by setting

$$(a \to b) = (\neg a \lor b).$$

For $\dot{x}, \dot{y} \in V^B$, we define the following *Boolean values* inductively:

- $||\dot{x} \in \dot{y}|| = \sup\{||\dot{x} = \dot{t}|| \land \dot{y}(\dot{t}) \mid \dot{t} \in \operatorname{dom} \dot{y}\},\$
- $||\dot{x} \subseteq \dot{y}|| = \inf{\{\dot{x}(\dot{t}) \to ||\dot{t} \in \dot{y}|| | \dot{t} \in \operatorname{dom} \dot{x}\}}, \text{ and}$
- $||\dot{x} = \dot{y}|| = ||\dot{x} \subseteq \dot{y}|| \land ||\dot{y} \subseteq \dot{x}||.$

Verify the following properties of V^B , for all \dot{x} , \dot{y} , \dot{z} in V^B .

- $||\dot{x} = \dot{x}|| = 1.$
- $||\dot{x} = \dot{y}|| \wedge ||\dot{y} = \dot{z}|| \le ||\dot{x} = \dot{z}||.$
- $||\dot{x} \in \dot{y}|| \wedge ||\dot{x} = \dot{z}|| \le ||\dot{z} \in \dot{y}||,$
- $||\dot{y} \in \dot{x}|| \wedge ||\dot{x} = \dot{z}|| \le ||\dot{y} \in \dot{z}||.$

For any first order formula φ in the language of set theory, and $\dot{x}_1, \ldots, \dot{x}_n \in V^B$, we define the Boolean value of $\varphi(\dot{x}_1, \ldots, \dot{x}_n)$ inductively as follows.

- $||\neg \varphi(\dot{x}_1,\ldots,\dot{x}_n)|| = \neg ||\varphi(\dot{x}_1,\ldots,\dot{x}_n)||,$
- $||(\varphi \wedge \psi)(\dot{x}_1, \ldots, \dot{x}_n)|| = ||\varphi(\dot{x}_1, \ldots, \dot{x}_n)|| \wedge ||\psi(\dot{x}_1, \ldots, \dot{x}_n)||,$
- $||\exists x \varphi(x, \dot{x}_1, \ldots, \dot{x}_n)|| = \sup\{||\varphi(\dot{x}, \dot{x}_1, \ldots, \dot{x}_n)|| \mid \dot{x} \in V^B\}.$

For any first order formula φ in the language of set theory, and $\dot{x}_1, \ldots, \dot{x}_n \in V^B$, we say that $\varphi(\dot{x}_1, \ldots, \dot{x}_n)$ is valid in V^B in case $||\varphi(\dot{x}_1, \ldots, \dot{x}_n)|| = 1$.

• Every axiom of ZFC is valid in V^B . Verify this only for the axioms of Extensionality, Separation and Powerset.