Models of Set Theory I - Summer 2017

Prof. Peter Koepke, Dr. Philipp Lücke - Problem Sheet 8

Problem 29 [4 points] Let α be an ordinal, let $\mathbb{P} \in M$ be a forcing notion, and let M be a countable ground model. We call \dot{x} a nice \mathbb{P}-name for a subset of α in case \dot{x} is of the form

$$
\dot{x}=\bigcup\left\{\{\check{\beta}\} \times A_{\beta} \mid \beta \in \alpha\right\},
$$

where each A_{β} is an antichain of \mathbb{P}.

- Show that if $\alpha \in \operatorname{Ord}^{M}$, and $1 \Vdash \dot{x} \subseteq \check{\alpha}$, then there is a nice name \dot{y} such that $1 \Vdash \dot{x}=\dot{y}$.
- Let \mathbb{P} be Cohen forcing, and let κ be an infinite cardinal in M. Calculate the number of nice \mathbb{P}-names for subsets of κ in M. Use this to argue that $\left(2^{\kappa}\right)^{M[G]}=\left(2^{\kappa}\right)^{M}$.

Problem 30 [4 points] Assume that $r: \omega \rightarrow 2$ is a Cohen real over the countable ground model M.

- Show that both a and b are Cohen reals over M, where

$$
a=\{(n, i) \mid(2 n, i) \in r\}, b=\{(n, i) \mid(2 n+1, i) \in r\} .
$$

- Show that if G is generic for Cohen forcing over M, then in $M[G]$, there are $2^{\aleph_{0}}$-many pairwise different Cohen reals over M.

Problem 31 [3 points] A subset X of \mathbb{R} has strong measure zero if for any sequence $\left\langle n_{i} \mid i<\omega\right\rangle$ of natural numbers, it can be covered by a sequence of intervals $\left\langle I_{i} \mid i<\omega\right\rangle$ such that I_{i} has length at most $\frac{1}{n_{i}}$ for every $i<\omega$. Let M be a countable ground model. Show that the ground model reals have strong measure zero in any generic extension for Cohen forcing.

Problem 32 [9 points] Let B be a complete Boolean algebra. We shall define a Boolean-valued model V^{B} inductively as follows.

1. $V_{0}^{B}=\emptyset$.
2. $V_{\alpha+1}^{B}$ is the set of all B-names \dot{x} of the form $\dot{x}=\left\{\left(\dot{y}_{i}, b_{i}\right) \mid i \in I\right\}$ where I is any set, and each \dot{y}_{i} is in V_{α}^{B}.
3. If α is a limit ordinal, or $\alpha=\operatorname{Ord}$, then $V_{\alpha}^{B}=\bigcup_{\beta \in \alpha} V_{\beta}^{B}$.
4. $V^{B}=V_{\text {Ord }}^{B}$.

We define the auxiliary notion of Boolean implication by setting

$$
(a \rightarrow b)=(\neg a \vee b)
$$

For $\dot{x}, \dot{y} \in V^{B}$, we define the following Boolean values inductively:

- $\|\dot{x} \in \dot{y}\|=\sup \{\|\dot{x}=\dot{t}\| \wedge \dot{y}(\dot{t}) \mid \dot{t} \in \operatorname{dom} \dot{y}\}$,
- $\|\dot{x} \subseteq \dot{y}\|=\inf \{\dot{x}(\dot{t}) \rightarrow\|\dot{t} \in \dot{y}\| \mid \dot{t} \in \operatorname{dom} \dot{x}\}$, and
- $\|\dot{x}=\dot{y}\|=\|\dot{x} \subseteq \dot{y}\| \wedge\|\dot{y} \subseteq \dot{x}\|$.

Verify the following properties of V^{B}, for all $\dot{x}, \dot{y}, \dot{z}$ in V^{B}.

- $\|\dot{x}=\dot{x}\|=1$.
- $\|\dot{x}=\dot{y}\| \wedge\|\dot{y}=\dot{z}\| \leq\|\dot{x}=\dot{z}\|$.
- $\|\dot{x} \in \dot{y}\| \wedge\|\dot{x}=\dot{z}\| \leq\|\dot{z} \in \dot{y}\|$,
- $\|\dot{y} \in \dot{x}\| \wedge\|\dot{x}=\dot{z}\| \leq\|\dot{y} \in \dot{z}\|$.

For any first order formula φ in the language of set theory, and $\dot{x}_{1}, \ldots, \dot{x}_{n} \in V^{B}$, we define the Boolean value of $\varphi\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\right)$ inductively as follows.

- $\left\|\neg \varphi\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\right)\right\|=\neg\left\|\varphi\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\right)\right\|$,
- $\left\|(\varphi \wedge \psi)\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\right)\right\|=\| \varphi\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\|\wedge\| \psi\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\right) \|\right.$,
- $\left\|\exists x \varphi\left(x, \dot{x}_{1}, \ldots, \dot{x}_{n}\right)\right\|=\sup \left\{\left\|\varphi\left(\dot{x}, \dot{x}_{1}, \ldots, \dot{x}_{n}\right)\right\| \mid \dot{x} \in V^{B}\right\}$.

For any first order formula φ in the language of set theory, and $\dot{x}_{1}, \ldots, \dot{x}_{n} \in V^{B}$, we say that $\varphi\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\right)$ is valid in V^{B} in case $\left\|\varphi\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\right)\right\|=1$.

- Every axiom of ZFC is valid in V^{B}. Verify this only for the axioms of Extensionality, Separation and Powerset.

