Models of Set Theory I – Summer 2017

Prof. Peter Koepke, Dr. Philipp Lücke – Problem Sheet 7

Problem 25 [3 points] Fix a countable ground model M and a partial order $\mathbb{P} \in M$ that contains two incompatible conditions. Provide a counterexample to the following.

 $[p \Vdash \varphi \lor \psi]$ if and only if $[p \Vdash \varphi \lor p \Vdash \psi]$.

Problem 26 [4 points] Fix a countable ground model M and a partial order $\mathbb{P} \in M$. Let F be a filter on \mathbb{P} which is not \mathbb{P} -generic over M. Show that there is an \in -formula φ and \mathbb{P} -names $\langle \dot{x}_i \mid i < k \rangle$ for some $k \in \omega$, such that $M[F] \models \varphi(\dot{x}_0^F, \ldots, \dot{x}_{k-1}^F)$, however there is no $p \in F$ such that $p \Vdash \varphi(\dot{x}_0, \ldots, \dot{x}_{k-1})$.

Problem 27 [5 points] Let $\mathbb{P} = \langle P, \leq, \ldots \rangle$ be a partial order. Given $A \subseteq P$, we say that

$$a = \sup A$$

in case $a \in P$ is the least upper bound of A in \mathbb{P} , that is

- $b \leq a$ for every $b \in A$ and
- $a \leq c$ whenever $c \in P$ is such that $b \leq c$ for every $b \in A$.

For a Boolean algebra \mathbb{B} and some $A \subseteq B$, $\sup A$ may or may not exist in B. We say that \mathbb{B} is *complete* in case $\sup A$ exists in B for every $A \subseteq B$. If \mathbb{P} is any separative partial order, we say that \mathbb{B} is a *completion* of \mathbb{P} in case P is a dense subset of $B \setminus \{0\}$ and \mathbb{B} is a complete Boolean algebra.

- Provide a definition of when $a = \inf A$, and show that if \mathbb{B} is a Boolean algebra, then $\inf A$ exists in B for every $A \subseteq B$ if and only if $\sup A$ exists in B for every $A \subseteq B$.
- Show that if \mathbb{B} and \mathbb{C} are both completions of a given separative partial order \mathbb{P} , then \mathbb{B} and \mathbb{C} are isomorphic.

Problem 28 [8 points] Let \mathbb{P} be a separative partial order. We say that $A \subseteq P$ is a *cut* in case $q \in A$ whenever $q \leq p$ for some $p \in A$. For $p \in P$, let $A_p = \{x \mid x \leq p\}$. A cut A is *regular* in case

 $p \notin A$ implies $\exists q \leq p \ A_q \cap A = \emptyset$.

- Show that A_p is a regular cut whenever $p \in P$.
- Show that each cut A is included (as a subset) in a subset-least regular cut \overline{A} .
- Let B be the collection of regular cuts of P. Define the operations of $\mathbb{B} = \langle B, \wedge, \vee, \neg, 0, 1 \rangle$ as follows.
 - $\begin{aligned} &-0 = \emptyset, \\ &-1 = P, \\ &-b \wedge c = b \cap c, \\ &-b \lor c = \overline{b \cup c}, \text{ where } \overline{b \cup c} \text{ denotes the subset-least regular cut containing} \\ &b \cup c, \text{ and} \end{aligned}$

$$- \neg b = \{c \mid A_c \cap b = \emptyset\}.$$

Show that \mathbb{B} is a complete Boolean algebra.

- Show that P can be identified with a dense subset of $B \setminus \{0\}$ via the embedding that maps $p \in P$ to $A_p \in B$.
- Note: We have shown that if \mathbb{P} is any separative partial order, then there is a unique complete Boolean algebra \mathbb{B} such that P is a dense subset of $B \setminus \{0\}$.