Models of Set Theory I - Summer 2017

Prof. Peter Koepke, Dr. Philipp Lücke - Problem Sheet 7

Problem 25 [3 points] Fix a countable ground model M and a partial order $\mathbb{P} \in M$ that contains two incompatible conditions. Provide a counterexample to the following.

$$
[p \Vdash \varphi \vee \psi] \text { if and only if }[p \Vdash \varphi \vee p \Vdash \psi] .
$$

Problem 26 [4 points] Fix a countable ground model M and a partial order $\mathbb{P} \in M$. Let F be a filter on \mathbb{P} which is not \mathbb{P}-generic over M. Show that there is an \in-formula φ and \mathbb{P}-names $\left\langle\dot{x}_{i} \mid i<k\right\rangle$ for some $k \in \omega$, such that $M[F] \models$ $\varphi\left(\dot{x}_{0}^{F}, \ldots, \dot{x}_{k-1}^{F}\right)$, however there is no $p \in F$ such that $p \Vdash \varphi\left(\dot{x}_{0}, \ldots, \dot{x}_{k-1}\right)$.

Problem 27 [5 points] Let $\mathbb{P}=\langle P, \leq, \ldots\rangle$ be a partial order. Given $A \subseteq P$, we say that

$$
a=\sup A
$$

in case $a \in P$ is the least upper bound of A in \mathbb{P}, that is

- $b \leq a$ for every $b \in A$ and
- $a \leq c$ whenever $c \in P$ is such that $b \leq c$ for every $b \in A$.

For a Boolean algebra \mathbb{B} and some $A \subseteq B$, sup A may or may not exist in B. We say that \mathbb{B} is complete in case $\sup A$ exists in B for every $A \subseteq B$. If \mathbb{P} is any separative partial order, we say that \mathbb{B} is a completion of \mathbb{P} in case P is a dense subset of $B \backslash\{0\}$ and \mathbb{B} is a complete Boolean algebra.

- Provide a definition of when $a=\inf A$, and show that if \mathbb{B} is a Boolean algebra, then $\inf A$ exists in B for every $A \subseteq B$ if and only if $\sup A$ exists in B for every $A \subseteq B$.
- Show that if \mathbb{B} and \mathbb{C} are both completions of a given separative partial order \mathbb{P}, then \mathbb{B} and \mathbb{C} are isomorphic.

Problem 28 [8 points] Let \mathbb{P} be a separative partial order. We say that $A \subseteq P$ is a cut in case $q \in A$ whenever $q \leq p$ for some $p \in A$. For $p \in P$, let $A_{p}=\{x \mid$ $x \leq p\}$. A cut A is regular in case

$$
p \notin A \text { implies } \exists q \leq p A_{q} \cap A=\emptyset .
$$

- Show that A_{p} is a regular cut whenever $p \in P$.
- Show that each cut A is included (as a subset) in a subset-least regular cut \bar{A}.
- Let B be the collection of regular cuts of P. Define the operations of $\mathbb{B}=$ $\langle B, \wedge, \vee, \neg, 0,1\rangle$ as follows.
$-0=\emptyset$,
$-1=P$,
$-b \wedge c=b \cap c$,
$-b \vee c=\overline{b \cup c}$, where $\overline{b \cup c}$ denotes the subset-least regular cut containing $b \cup c$, and

$$
-\neg b=\left\{c \mid A_{c} \cap b=\emptyset\right\} .
$$

Show that \mathbb{B} is a complete Boolean algebra.

- Show that P can be identified with a dense subset of $B \backslash\{0\}$ via the embedding that maps $p \in P$ to $A_{p} \in B$.

Note: We have shown that if \mathbb{P} is any separative partial order, then there is a unique complete Boolean algebra \mathbb{B} such that P is a dense subset of $B \backslash\{0\}$.

