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Problem 17 [5 points] Let M be a countable and transitive model of ZFC,
and let P = (P,≤, 1P) ∈ M be a forcing notion. The P -name space of M
is defined as follows. We say that ẋ is a P -name if ẋ is of the form ẋ =
{(ẏi, pi) | i ∈ I} for some set I, such that each ẏi is a P -name, and each pi
is an element of P . The P -name space of M is the collection of all P -names
that are elements of M .

Verify the following properties of P -names.

• Whether or not some ẋ is a P -name can be formulated as a first order
property in the language of set theory, by a definite formula.

• If ẋ ∈ M , then there is a P -name ẏ ∈ M such that ẋG = ẏG whenever
G ⊆ P is a filter on P. In fact, there is a map F : M →M which maps
each ẋ ∈ M to such an equivalent P -name ẏ, and the graph of F can
be defined by a first order formula in the language of set theory within
M .

Problem 18 [5 points] Let M be a countable and transitive model of ZFC.

1. Let P denote Cohen forcing. Show that P = (P,≤, 1P) ∈M , and find a
P -name ẋ ∈M such that for every n ∈ N, there is a filter G on P such
that ẋG = n, and such that ẋG ∈ N for every filter G on P.

2. Let P = (P,≤, 1P) ∈ M be an arbitrary forcing notion, and show that
there cannot be a P -name ẋ ∈M such that for every y ∈M there is a
filter G on P such that ẋG = y.

Problem 19 [4 points] Let M be a countable and transitive model of ZFC,
and let P = (P,≤, 1P) denote Cohen forcing.

1. Show that whenever x ⊆ ω, then x induces a filter

Gx = {p ∈ P | p = x � dom p}.

2. Show that there is a filter G on P such that M [G] does not satisfy all
axioms of ZFC.

Hint: Since the ordinal height α of M (that is α = M ∩Ord) is countable, we
find a wellordering ≺ of ω of order-type α. Using a bijection between
ω × ω and ω, we may code ≺ by some x ⊆ ω. Make these remarks
precise, and then show that M [Gx] cannot satisfy all axioms of ZFC.



Problem 20 [6 points] A Boolean Algebra is a set B with two binary
operations ∧ and ∨, a unary operation ¬ and two elements 0 and 1, satisfying
the following axioms, for all a, b, c ∈ B.

a ∨ (b ∨ c) = (a ∨ b) ∨ c a ∧ (b ∧ c) = (a ∧ b) ∧ c associativity
a ∨ b = b ∨ a a ∧ b = b ∧ a commutativity
a ∨ (a ∧ b) = a a ∧ (a ∨ b) = a absorption
a ∨ 0 = a a ∧ 1 = a identity
a ∧ 0 = 0 a ∨ 1 = 1 extremality
a ∨ a = a a ∧ a = a idempotence
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) distributivity
a ∨ ¬a = 1 a ∧ ¬a = 0 complements

One can define a natural ordering on a Boolean algebra B by setting, for
a, b ∈ B,

a ≤ b ⇐⇒ a ∧ b = a.

Let B be the domain of a Boolean algebra with the above operations and
ordering, let B∗ = B \ {0}, and let B = (B∗,≤, 1). Verify the following.

• For all a, b ∈ B, a ≤ b ⇐⇒ a ∨ b = b.

• B is a forcing notion.

• B∗ is separative, that is for p, q ∈ B∗, if ¬(p ≤ q), then there is r ≤ p
in B∗ such that r ∧ q = 0.

• If P = (P,≤P, 1P) is a partial order, consider the following equivalence
relation ∼ on P . We say that for p, q ∈ P , p ∼ q if and only if

∀r [r is compatible with p ⇐⇒ r is compatible with q].

We define the separative quotient of P to be the following partial order
Q = (Q,≤Q, 1Q). Q = P/ ∼ = {[p]∼ | p ∈ P}. For [p]∼, [q]∼ ∈ Q, we
let [p]∼ ≤ [q]∼ if and only if

∀r ≤ p [r and q are compatible].

Show that Q is a well-defined separative partial order with the following
properties

– p ≤ q implies [p]∼ ≤ [q]∼, and

– p and q are compatible in P if and only if [p]∼ and [q]∼ are com-
patible in Q.


