Models of Set Theory I – Summer 2017 Prof. Peter Koepke, Dr. Philipp Lücke – Problem Sheet 5

Problem 17 [5 points] Let M be a countable and transitive model of ZFC, and let $\mathbb{P} = (P, \leq, 1_{\mathbb{P}}) \in M$ be a forcing notion. The *P*-name space of Mis defined as follows. We say that \dot{x} is a *P*-name if \dot{x} is of the form $\dot{x} = \{(\dot{y}_i, p_i) \mid i \in I\}$ for some set I, such that each \dot{y}_i is a *P*-name, and each p_i is an element of P. The *P*-name space of M is the collection of all *P*-names that are elements of M.

Verify the following properties of *P*-names.

- Whether or not some \dot{x} is a *P*-name can be formulated as a first order property in the language of set theory, by a definite formula.
- If $\dot{x} \in M$, then there is a *P*-name $\dot{y} \in M$ such that $\dot{x}^G = \dot{y}^G$ whenever $G \subseteq P$ is a filter on \mathbb{P} . In fact, there is a map $F \colon M \to M$ which maps each $\dot{x} \in M$ to such an *equivalent P*-name \dot{y} , and the graph of *F* can be defined by a first order formula in the language of set theory within M.

Problem 18 [5 points] Let M be a countable and transitive model of ZFC.

- 1. Let \mathbb{P} denote Cohen forcing. Show that $\mathbb{P} = (P, \leq, 1_{\mathbb{P}}) \in M$, and find a P-name $\dot{x} \in M$ such that for every $n \in \mathbb{N}$, there is a filter G on \mathbb{P} such that $\dot{x}^G = n$, and such that $\dot{x}^G \in \mathbb{N}$ for every filter G on \mathbb{P} .
- 2. Let $\mathbb{P} = (P, \leq, 1_{\mathbb{P}}) \in M$ be an arbitrary forcing notion, and show that there cannot be a *P*-name $\dot{x} \in M$ such that for every $y \in M$ there is a filter *G* on \mathbb{P} such that $\dot{x}^G = y$.

Problem 19 [4 points] Let M be a countable and transitive model of ZFC, and let $\mathbb{P} = (P, \leq, 1_{\mathbb{P}})$ denote Cohen forcing.

1. Show that whenever $x \subseteq \omega$, then x induces a filter

$$G_x = \{ p \in P \mid p = x \restriction \text{dom } p \}.$$

- 2. Show that there is a filter G on \mathbb{P} such that M[G] does not satisfy all axioms of ZFC.
- Hint: Since the ordinal height α of M (that is $\alpha = M \cap \text{Ord}$) is countable, we find a wellordering \prec of ω of order-type α . Using a bijection between $\omega \times \omega$ and ω , we may code \prec by some $x \subseteq \omega$. Make these remarks precise, and then show that $M[G_x]$ cannot satisfy all axioms of ZFC.

Problem 20 [6 points] A *Boolean Algebra* is a set *B* with two binary operations \land and \lor , a unary operation \neg and two elements 0 and 1, satisfying the following axioms, for all $a, b, c \in B$.

$a \lor (b \lor c) = (a \lor b) \lor c$	$a \wedge (b \wedge c) = (a \wedge b) \wedge c$	associativity
$a \lor b = b \lor a$	$a \wedge b = b \wedge a$	commutativity
$a \lor (a \land b) = a$	$a \wedge (a \vee b) = a$	absorption
$a \lor 0 = a$	$a \wedge 1 = a$	identity
$a \wedge 0 = 0$	$a \lor 1 = 1$	extremality
$a \lor a = a$	$a \wedge a = a$	idempotence
$a \lor (b \land c) = (a \lor b) \land (a \lor c)$	$a \land (b \lor c) = (a \land b) \lor (a \land c)$	distributivity
$a \vee \neg a = 1$	$a \wedge \neg a = 0$	complements

One can define a natural ordering on a Boolean algebra B by setting, for $a, b \in B$,

$$a \leq b \iff a \wedge b = a.$$

Let B be the domain of a Boolean algebra with the above operations and ordering, let $B^* = B \setminus \{0\}$, and let $\mathbb{B} = (B^*, \leq, 1)$. Verify the following.

- For all $a, b \in B$, $a \le b \iff a \lor b = b$.
- \mathbb{B} is a forcing notion.
- B^* is separative, that is for $p, q \in B^*$, if $\neg (p \le q)$, then there is $r \le p$ in B^* such that $r \land q = 0$.
- If $\mathbb{P} = (P, \leq_{\mathbb{P}}, 1_{\mathbb{P}})$ is a partial order, consider the following equivalence relation \sim on P. We say that for $p, q \in P, p \sim q$ if and only if

 $\forall r \ [r \text{ is compatible with } p \iff r \text{ is compatible with } q].$

We define the separative quotient of \mathbb{P} to be the following partial order $\mathbb{Q} = (Q, \leq_{\mathbb{Q}}, 1_{\mathbb{Q}}). \ Q = P/ \sim = \{[p]_{\sim} \mid p \in P\}.$ For $[p]_{\sim}, [q]_{\sim} \in Q$, we let $[p]_{\sim} \leq [q]_{\sim}$ if and only if

 $\forall r \leq p \ [r \text{ and } q \text{ are compatible}].$

Show that Q is a well-defined separative partial order with the following properties

- $-p \leq q$ implies $[p]_{\sim} \leq [q]_{\sim}$, and
- -p and q are compatible in \mathbb{P} if and only if $[p]_{\sim}$ and $[q]_{\sim}$ are compatible in \mathbb{Q} .