Models of Set Theory I - Summer 2017

Prof. Peter Koepke, Dr. Philipp Lücke - Problem Sheet 5

Problem 17 [5 points] Let M be a countable and transitive model of ZFC, and let $\mathbb{P}=\left(P, \leq, 1_{\mathbb{P}}\right) \in M$ be a forcing notion. The P-name space of M is defined as follows. We say that \dot{x} is a P-name if \dot{x} is of the form $\dot{x}=$ $\left\{\left(\dot{y}_{i}, p_{i}\right) \mid i \in I\right\}$ for some set I, such that each \dot{y}_{i} is a P-name, and each p_{i} is an element of P. The P-name space of M is the collection of all P-names that are elements of M.

Verify the following properties of P-names.

- Whether or not some \dot{x} is a P-name can be formulated as a first order property in the language of set theory, by a definite formula.
- If $\dot{x} \in M$, then there is a P-name $\dot{y} \in M$ such that $\dot{x}^{G}=\dot{y}^{G}$ whenever $G \subseteq P$ is a filter on \mathbb{P}. In fact, there is a map $F: M \rightarrow M$ which maps each $\dot{x} \in M$ to such an equivalent P-name \dot{y}, and the graph of F can be defined by a first order formula in the language of set theory within M.

Problem 18 [5 points] Let M be a countable and transitive model of ZFC.

1. Let \mathbb{P} denote Cohen forcing. Show that $\mathbb{P}=\left(P, \leq, 1_{\mathbb{P}}\right) \in M$, and find a P-name $\dot{x} \in M$ such that for every $n \in \mathbb{N}$, there is a filter G on \mathbb{P} such that $\dot{x}^{G}=n$, and such that $\dot{x}^{G} \in \mathbb{N}$ for every filter G on \mathbb{P}.
2. Let $\mathbb{P}=\left(P, \leq, 1_{\mathbb{P}}\right) \in M$ be an arbitrary forcing notion, and show that there cannot be a P-name $\dot{x} \in M$ such that for every $y \in M$ there is a filter G on \mathbb{P} such that $\dot{x}^{G}=y$.

Problem 19 [4 points] Let M be a countable and transitive model of ZFC, and let $\mathbb{P}=\left(P, \leq, 1_{\mathbb{P}}\right)$ denote Cohen forcing.

1. Show that whenever $x \subseteq \omega$, then x induces a filter

$$
G_{x}=\{p \in P \mid p=x \upharpoonright \operatorname{dom} p\} .
$$

2. Show that there is a filter G on \mathbb{P} such that $M[G]$ does not satisfy all axioms of ZFC.

Hint: Since the ordinal height α of M (that is $\alpha=M \cap \mathrm{Ord}$) is countable, we find a wellordering \prec of ω of order-type α. Using a bijection between $\omega \times \omega$ and ω, we may code \prec by some $x \subseteq \omega$. Make these remarks precise, and then show that $M\left[G_{x}\right]$ cannot satisfy all axioms of ZFC.

Problem 20 [6 points] A Boolean Algebra is a set B with two binary operations \wedge and \vee, a unary operation \neg and two elements 0 and 1 , satisfying the following axioms, for all $a, b, c \in B$.

$$
\begin{array}{llr}
a \vee(b \vee c)=(a \vee b) \vee c & a \wedge(b \wedge c)=(a \wedge b) \wedge c & \text { associativity } \\
a \vee b=b \vee a & a \wedge b=b \wedge a & \text { commutativity } \\
a \vee(a \wedge b)=a & a \wedge(a \vee b)=a & \text { absorption } \\
a \vee 0=a & a \wedge 1=a & \text { identity } \\
a \wedge 0=0 & a \vee 1=1 & \text { extremality } \\
a \vee a=a & a \wedge a=a & \text { idempotence } \\
a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c) & a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c) & \text { distributivity } \\
a \vee \neg a=1 & a \wedge \neg a=0 & \text { complements }
\end{array}
$$

One can define a natural ordering on a Boolean algebra B by setting, for $a, b \in B$,

$$
a \leq b \quad \Longleftrightarrow \quad a \wedge b=a .
$$

Let B be the domain of a Boolean algebra with the above operations and ordering, let $B^{*}=B \backslash\{0\}$, and let $\mathbb{B}=\left(B^{*}, \leq, 1\right)$. Verify the following.

- For all $a, b \in B, a \leq b \Longleftrightarrow a \vee b=b$.
- \mathbb{B} is a forcing notion.
- B^{*} is separative, that is for $p, q \in B^{*}$, if $\neg(p \leq q)$, then there is $r \leq p$ in B^{*} such that $r \wedge q=0$.
- If $\mathbb{P}=\left(P, \leq_{\mathbb{P}}, 1_{\mathbb{P}}\right)$ is a partial order, consider the following equivalence relation \sim on P. We say that for $p, q \in P, p \sim q$ if and only if
$\forall r[r$ is compatible with $p \Longleftrightarrow r$ is compatible with $q]$.
We define the separative quotient of \mathbb{P} to be the following partial order $\mathbb{Q}=\left(Q, \leq_{\mathbb{Q}}, 1_{\mathbb{Q}}\right) \cdot Q=P / \sim=\left\{[p]_{\sim} \mid p \in P\right\}$. For $[p]_{\sim},[q]_{\sim} \in Q$, we let $[p]_{\sim} \leq[q]_{\sim}$ if and only if

$$
\forall r \leq p \text { [r and } q \text { are compatible }] .
$$

Show that Q is a well-defined separative partial order with the following properties
$-p \leq q$ implies $[p]_{\sim} \leq[q]_{\sim}$, and
$-p$ and q are compatible in \mathbb{P} if and only if $[p]_{\sim}$ and $[q]_{\sim}$ are compatible in \mathbb{Q}.

