Models of Set Theory I – Summer 2017

Prof. Peter Koepke, Dr. Philipp Lücke – Problem Sheet 3

Problem 9 [2 points] Verify the following, working in ZF.

- 1. V = HOD if and only if there is a wellorder of V of order-type Ord that is definable without parameters.
- 2. If there is a set X without a wellordering, then there is some $x \in X$ so that $x \notin HOD$.

Problem 10 [4 points] Working in ZF, show that the following are equivalent.

- 1. V = OD
- 2. V = HOD
- 3. OD is transitive
- 4. Extensionality is true in OD

Problem 11 [8 points] Work in ZF. If $r \subseteq \omega$, we generalize OD to OD[r], and we generalize HOD to HOD[r], by allowing for the parameter r in their definitions, that is OD[r] is the collection of sets that are definable from ordinals together with the additional parameter r, and we let $x \in HOD[r]$ if and only if $TC(\{x\}) \subseteq OD[r]$.

- 1. Provide a definition of OD[r] by a formula in the language of set theory which corresponds to the above informal definition, such that $r \in HOD[r]$, and verify this latter property.
- 2. Show that HOD[r] is transitive.
- 3. Show that OD[r] has a wellorder of order-type Ord which is definable using r as parameter.
- 4. Show that ZFC holds in HOD[r].

Problem 12 [6 points] Work in ZFC. Let κ be a measurable cardinal, and let U be a κ -complete filter on κ . Let P be the collection of all p of the form $p = \langle s, A \rangle$ where s is a finite set of ordinals less than $\kappa, A \in U$, and max $s < \min A$. Given $\langle s, A \rangle$ and $\langle t, B \rangle$ both in P, we write $\langle t, B \rangle \leq \langle s, A \rangle$ if the following conditions hold true:

- $t \cap (\max(s) + 1) = s$,
- $B \subseteq A$ and
- $t \setminus s \subseteq A$.

Show that

- 1. $\mathbb{P} = \langle P, \leq \rangle$ is a partial order.
- 2. \mathbb{P} has the κ^+ -cc.