Models of Set Theory I – Summer 2017

Prof. Peter Koepke, Dr. Philipp Lücke – Problem Sheet 2

Problem 5 Prove the following statements for all class terms S, T, W.

- (a) [1 point]: $(S = T)^W \iff S^W = T^W$.
- (b) [1 point]: $(S \in T)^W \iff S^W \in T^W$.

Problem 6 [4 points]: Working in ZFC, let $W = V \setminus V_{\omega}$. Examine which axioms and schemes of ZFC hold in W.

Problem 7 We say that a sequence $(C_{\alpha} \mid \alpha \in \text{Ord})$ is a *continuous hierarchy* if the following conditions hold.

- (i) $V = \bigcup_{\alpha \in \operatorname{Ord}} C_{\alpha}$.
- (ii) $C_{\alpha} \subseteq C_{\beta}$ for all ordinals $\alpha < \beta$.
- (iii) $C_{\beta} = \bigcup_{\alpha < \beta} C_{\alpha}$ for all limit ordinals β .

Prove the following statements.

- (a) [2 points]: If $(C_{\alpha} \mid \alpha \in \text{Ord})$ and $(D_{\alpha} \mid \alpha \in \text{Ord})$ are continuous hierarchies, then there is a club E in Ord such that $C_{\alpha} = D_{\alpha}$ for all $\alpha \in E$.
- (b) [2 points]: $H_{\kappa} = V_{\kappa}$ for every inaccessible cardinal κ .
- (c) [2 points]: If κ is an inaccessible cardinal, then there is an uncountable cardinal $\lambda < \kappa$ with $H_{\lambda} = V_{\lambda}$.

Problem 8 We define the following notions for any infinite cardinal κ and any partial order $\mathbb{P} = (P, \leq)$.

- (i) p, q are compatible in \mathbb{P} if there is some $r \leq p, q$.
- (ii) An *antichain in* \mathbb{P} is a set of pairwise incompatible elements of \mathbb{P} .
- (iii) \mathbb{P} has the κ -chain condition (κ -c.c.) if and only if there is no antichain in \mathbb{P} of size κ .

If λ is an infinite cardinal, let \mathbb{C}_{λ} denote the partial order $\mathbb{C}_{\lambda} = (C_{\lambda}, \supseteq)$, where

$$C_{\lambda} = \{ p \colon \alpha \to 2 \mid \alpha < \lambda \}.$$

If $\mathbb{Q} = (Q, \leq)$ is any partial order, let $\mathbb{Q} \times \mathbb{Q}$ denote the product partial order with domain $Q \times Q$ that is defined by

$$(a,b) \le (c,d) \Leftrightarrow a \le c \land b \le d.$$

- (a) [4 points]: Determine the least infinite cardinal κ such that \mathbb{C}_{ω_1} has the κ -c.c.
- (b) [4 points]: Show that \mathbb{C}_{ω} and \mathbb{C}_{ω}^2 are isomorphic partial orders.