## Models of Set Theory I – Summer 2017

Prof. Peter Koepke, Dr. Philipp Lücke – Problem Sheet 1

Solve the following problems, assuming ZFC to hold.

**Problem 1** [4 points]:

- For which axioms  $\varphi$  of ZFC does  $\varphi^{Ord}$  hold?
- Let  $X = \{y \mid y \subseteq Ord\}$ . For which axioms  $\varphi$  of ZFC does  $\varphi^X$  hold?

**Problem 2** [4 points]: Let  $\{W_i \mid i < \omega\}$  be a collection of transitive sets such that for each axiom  $\varphi$  of ZFC and each  $i < \omega$ ,  $\varphi^{W_i}$  holds.

- Show that the ZFC axioms of Pairing, Union and Infinity hold in  $\bigcap_{i<\omega} W_i$ , and that they hold in  $\bigcup_{i<\omega} W_i$  in case the  $W_i$  form an increasing sequence, that is  $W_i \subseteq W_j$  whenever  $0 \le i < j < \omega$ .
- Assume that whenever i < j, then there is a subset of  $\omega$  which is an element of  $W_j \setminus W_i$ . Show that under this assumption,  $(Power)^{(\bigcup_{i < \omega} W_i)}$  fails to hold.

**Problem 3** [4 points]:

• Assume that M is transitive and that  $x \in M$ . Show that

$$(x \in Ord)^M \iff x \in (Ord \cap M).$$

• Find a transitive set X such that  $(Pairing)^X$  holds, however  $(Union)^X$  fails.

**Problem 4** [8 points]: Given a cardinal  $\kappa$ , we define

$$H_{\kappa} = \{ x \mid card(TC(\{x\})) < \kappa \}.$$

Examine which ZFC axioms hold in  $H_{\kappa}$  for various infinite cardinals  $\kappa$ .