Aufgabe 1. Sei $x \in \mathbb{C}$ ein Punkt auf dem Einheitskreis. Parametrisieren Sie die Tangente T_x des Einheitskreises an x in Polarkoordinaten.

Aufgabe 2. Sei $n \in \mathbb{N}$, und μ_n die Menge der n-ten Einheitswurzeln in \mathbb{C} . Wir bezeichnen mit O_2 die Menge der linearen euklidischen Bewegungen $\beta_A : \mathbb{C} \to \mathbb{C}$ für entsprechende $A \in \mathbb{C}^2$. Schließlich sei $D_n = \{\beta \in O_2 \mid \beta(\mu_n) = \mu_n\}$.

- (a) Zeigen Sie, dass $E = \{\beta_A \in O_2 \mid A \in \mathbb{Z}[i]^2\}$ eine Untergruppe von O_2 der Ordnung 8 ist. Vergleichen Sie E mit D_4 .
- (b) Begründen Sie, dass D_n die Symmetriegruppe des regulären n-Ecks ist.

Aufgabe 3.

- (a) Finden Sie die komplexen Nullstellen des Polynoms $X^2 + 4iX + 5$.
- (b) Seien $a, b \in \mathbb{R}$. Lösen Sie die Gleichung $(X a)^7 = b^7$ über \mathbb{C} .
- (c) Sei $z\in\mathbb{C}$ eine nicht-reelle Nullstelle des Polynoms $X^2-\sqrt{3}X+b$. Stellen Sie z in Polarkoordinaten dar.