Prof. Dr. Peter Koepke, Thomas Poguntke

Übungsblatt 2

Aufgabe 57 (2+3 Punkte).

- (a) Zeigen Sie, dass eine ganze Zahl n genau dann als Summe dreier aufeinanderfolgender ganzer Zahlen dargestellt werden kann, wenn 3|n.
- (b) Formulieren und beweisen Sie eine allgemeine Regel für Summen von k aufeinanderfolgenden Zahlen.

Aufgabe 58 (2+3+2 Punkte).

(a) Sei p eine Primzahl und 0 < k < p. Zeigen Sie, dass $p \mid \binom{p}{k}$. Folgern Sie mit Hilfe des binomischen Lehrsatzes, dass für alle ganzen Zahlen $a, b \in \mathbb{Z}$ gilt

$$(a+b)^p \equiv a^p + b^p \mod p.$$

(b) Nutzen Sie (a), um per Induktion nach $a \in \mathbb{N}$ zu beweisen:

$$a^p \equiv a \bmod p$$
.

Folgern Sie, dass falls ggT(a, p) = 1 ist, sogar $a^{p-1} \equiv 1 \mod p$ gilt.

(c) Bestimmen Sie die Endziffer von 7²⁰¹⁷ (mit Begründung).

Aufgabe 59 (2+2+2+2+2 Punkte). Sei R ein Ring. Wir nennen die Menge der invertierbaren Elemente (bzgl. der Multiplikation) die Einheitengruppe R^{\times} .

- (a) Zeigen Sie, dass R^{\times} eine Gruppe ist.
- (b) Beweisen Sie, dass $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ ein Ring ist. (Hier ist $i^2 = -1$).
- (c) Zeigen Sie: $\alpha \in \mathbb{Z}[i]$ ist genau dann eine Einheit ist, wenn α auf dem Einheitskreis liegt. Folgern Sie, dass die Einheitengruppe $\mathbb{Z}[i]^{\times} = \mu_4$ ist. (siehe Präsenzblatt 1 für die Definition von μ_n).
- (d) Sei p eine Primzahl. Konstruieren Sie einen Gruppenisomorphismus

$$(\mathbb{Z}/p\mathbb{Z})^{\times} \longrightarrow \mathbb{Z}/(p-1)\mathbb{Z}.$$

Hinweis: Benutzen Sie Aufgabe 58 (b).

(e) Geben Sie einen Ringhomomorphismus $\mathbb{Z}[i] \to \mathbb{Z}/5\mathbb{Z}$ an, dessen Einschränkung auf die Einheitengruppen ein Gruppenisomorphismus ist.

Hinweis: Ein Ringhomomorphismus auf $\mathbb{Z}[i]$ ist eindeutig durch seine Einschränkung auf die Einheitengruppe bestimmt. (Weshalb?)

Abgabe: Donnerstag, 04.05.2017 um 14:00